TU/e s
Analysis and Modeling of the Timing Behavior
of GPU Architectures

Master Thesis
Petros Voudouris

Electronic Systems group
Faculty of Electrical Engineering
Eindhoven University of Technology

Supervisors: Henk Corporaal
GertJan van den Braak

November 2014

1

Abstract

Graphics processing units (GPUs) offer massive parallelism. Since a couple of years GPUs can also be
used for more general purpose applications; a wide variety of applications can be accelerated efficiently
with the use of the GDA and OpenCL programming models.

Realtime systera frequently use many sensdhat produce a big amount of dat&PUs can be used to
process thelata and remove the workload frahe central process unit (ClPU 0 use the GPUs in real
time systems its required to have time predictable behavidtowever, it is hardo give an
estimation of the worst case execution time (WCET) of a GPU progiangonly few timing details of
the GPU architecture are given. In additionside the GPUs several arldts are used, and their
scheduling details are not always clearly described.

The Nvidia Fermi architecture is analyzéu order to identify the sources of time variation and
unpredictability. Initially, all the main components of the architecture aceisked and investigated for
sources of time variation and predictability.

From the analyzed components of the architecture we chose to continue with the warp scheduler, the
scratchpad memory and the -aditchip global memoryThe warp scheduler determing® schedule of

the warps and as a result influensignificantly the total execution timeThe scratchpad memory is
widely used in GPU application to hide the memorgnat Finally, the global memorynstructiors were
analyzed since they are used fraththe applicationsMicro-benchmarks implemented in assembbrev

used toquantify the sources of variatioVe execute the same experiments multiple times in order to
determinethe variation of the execution time among the experiments.

A timing modelfor the warp scheduldrased on results from the experiments introduced. The model

was tested for Convolution separable benchmark from CUDA SDK. The model was accurate for average
case(96.5% of the experimentsvith 2% and 3% error for Rows andl@mns kernel respectively. For

the best case the model hdd% and-54% and worst case 28% and 1% error for rows and columns
kernel (3.5% of the experiment)n addition it was shown that the modé& scalable up to 6 warps
without any modification.

Furthermore, the variablate warp scheduler was implemented in GP&Id that improves the time
predictability of the GPU by assigning the warps in fixed sloitial results show thaby assigning one
warp with higher scheduling ratan improve the grformancealsoby taking advantage of the intararp
locality of the warps.

Finally, based otthe findings of tis report the GPU can be used in reahe systems with soft deadlines.
By using the suggested changdsthe architecturethe time predictaility of the architecture can be
improved even morand support applicatigwith more strict timing constrains.

Acknowledgments

I would like to express my sincere gratitude to my supervisors Professor Henk Corporaal and Gert-Jan
van den Braak, who have supported me throughout this thesis with great patience and immense
knowledge. Without their help the realization of this project would not be possible. Their suggestions
and encouragement helped me to overcome difficulties throughout this project and especially during
writing this report.

Furthermore, | would like to thank all the members of the PARSE group for their valuable feedback.

Last but not least, | would like thank to my family and my friends for their continuous support during my
whole studies.

Table of Contents

Lo INEFOTUCTION .ottt bbbt b bbbt b e et b e b anas 9
L1 MOTIVATION. ...ttt b bbbt b bbb 9
1.2, ProbIem STATEMENToiiiiiiee e 10
1.3. Organization Of the FEPOIT..........ci i s 10

2. BACKGIOUNGottt b b bbb b e n s 11
2.1, GPU ArCRITECTUIE........cuiiieit et 11
2.2, CUDA programming MOGEN.........c.coiiiiiiie st e ettt taesrenne s 13
2.3. GPGPU-SIM ...ttt bbb bbbttt 15

3e REIALEA WOTK ... bbbt bbbttt ettt e 17
3.1 TiMeE PrediCtabilityccvoiiiiiee e 17
3.2, Fermi GPU timing @NAIYSIScereiririiieieieiitese ettt 18

4. Time predictability fFOr GPUScoii ittt s et te e e sreeneesrenae s 19
4.1. Introduction to time predictability ..o s 19
4.2. Analysis of hardware components for timing variationcccoccevereeic v 21
4.3, CONCIUSION ...ttt ettt b bbbt b et e e b e bbbt e b n s 27

5. Quantification of time variation in Fermi GPU architeCture............cocooveviviveieie e 29
5.1. Experimental MethodOIOgYcccoieiiiiiiiiiiii e 29
5.2, WaArP SCREAUIETeeiicee ettt sttt e s be s e be s ae et e s beebesrestaebenre s 31
5.3. On-Chip SCratChpad MEMIOIY......c..ciiiiiie ettt s re et ae b e be e srestaenbesre s 37
5.4. Off-Chip - GIODal MEMOIY ..o et sreare s 38
5.5, CONCIUSION ...ttt bbbt bbbttt bbb e e 40

6. TIMING MOUEI ..ottt bbbt bt bbbttt b et b e enes 41
6.1. Instruction scheduling timing model for a single Warpccccooveveiiiiecicci e 41
6.2. Formulas of the timing MOUEL..........cceciiiiiie e e 43
6.3. Scalability Of the MOGEL..........ccooiiii e e 44
TR 6o o To] (1 T o S OSSSPSN 47

7. Benchmark: Convolution SEParabIe............ccoviiiiiiiiiii s 49
7.1, Application Of the MOENccoviiii e 49
A o 4] o U [T o ST PRSUUSPS 51
7.3. Effect of the memory latency onthe MOdelS ... 52
7.4. Analysis of the benchmark for time variation............cccccceviee i 53

7

7.5. Model scalability in tErMS OF WAIPSoiiiieiie et 57

7.6, CONCIUSION ...ttt bbbt bbbttt b bbb e n e 58
8. Variable rate Warp SCHEAUIINGccooviiiii e e re e re e 59
8.1. Motivation for the variable rate warp schedulercccoov i 59
8.2. Implementation and RESUITS.........cccoiiiiiie e 60
8.3, CONCIUSION ...ttt b bbbt e ettt b b r e 63
9. CoNCIUSIONS AN FULUIE WOTKvviiiteieieeie ettt 63
0.1, SUIMIMNY ..ttt r e r e e et et R e et R e e s e s R e e R e e e s Rt e R e e R e e Rt e n e nn e e e e nreereerenre s 63
9.2, FULUIE WOTK ...ttt bbbttt b b 64
9.3, CONCIUSION ...ttt bbbt b bbb bbbt bbb 65
RETEIENCES ...t bbb bbb bbb bbbt bbbt b bbb 68
Appendix A: Detailed EXPEIIMENTSciiiiiie et sb et b e 73
AL AFTNMETIC INSTIUCTION. ...ttt b e b 73
F NS - Y=o 41T 1o Y SRS 77
FAC T €1 [o] o= U 14 1=] 1410 VSRR 81
Appendix B: Detailed GPGPU-SIM diagram.........c.cooiiiiiiiiiiiie ettt 83
Appendix C: Program trace from GPGPU-SIMcoviiiiiiiiiisie e 85
Appendix D: Acronyms and ADDIEVIALIONSccoiiiiiiiiiiis e e 86

1. Introduction

Initially, the motivation to use the graphic process units for general purpose computing-timeeal
systems is presented. Next the proldevhusing the GPUs in retime systems ardiscussed. Finally,
the outline of the report is introduced.

1.1. Motivation

Computer systems are becoming more powerful while at the same time they become more complex. The
performance improvement is essential to serve the requirementddefmeystems. However, the state
of-the-art systems are so complex that it is not possible to analyze them in detail-timeesystems the

time predictability of a system is equally important with the correctness of the result. So, in the context of
real-time systems the time predictability is essential for the system.

Realtime systems typically appear in cykmtysical systemd={gurel), where snsors and actuators are
present. The control part of the system processes the data from the sensors and gives the appropriate
commands to the actuators. Cameras can be used as sensors for visual control of the system and all the
sensors produce indepentleatreams of data. Therefore, an architecture which can exploit data level
parallelization can process the data produced from the sensors efficiently.

Sensors Control Actuators
* o————o

i[

GPU <> CPU [[—» ©

\ A 4
[]

O

Figurel A reatime system with GPU that exploits the date
level parallelism derived from multiplesensors.

For a system with many sensors, data level parallelization can be exploited dnaph&es processing

unit (GPU). It can process the data and remove the workload froroethieal process uniCPU). GPUs

provide massive parallelism and can be used for general purpose programs to improve the performance of
compute intensive parts of the program. The Nvigiami architecture provides mechanisms that improve

the programmability of the GPU that are useful for genetapgse GPU programming (GPGPU).
Typically, GPUs hide memory latency by the concurrently executing threads. Fermi is the first GPU of
Nvidia thathas also data caches in order to hide memory latency. In addition, Fermi is a highly parallel
architecture and shows sources of unpredictability that are related to parallel execution and shared
resources.

1.2. Problem statement

Multiple executions of the same program with the same input on the same GPU take variable execution
times. The source of variation has to be identified and quantified in order to be able to determine the
range of the variation.

To use the GPU in a cybphysical system with redgime characteristigst is required to have time
predictable behavior that provides guaranties for the worst case executiofht@refore, it is required to
determine variation in execution times. If the variation is boundeud the system has time predictable
behavior. Otherwise, we cannot provide any guaranties for the worst case execution time and the
architecture is time unpredictable.

Typically, timing analysis tools specialized for the worst case execution time argoumkshtify the

timing behavior of the architecture. These tools are not available for GPUs thus a different approach is
needed to be followedn this report, a timing analysis of the Fermi GPU architecture is performed to
identify the sources of time urgdictability. We focus on latency analysis since throughput analysis for
Fermi has been performed extensively in literathtierobenchmarks implemented in assemiolyGPUs

are used to identify and quantify the sources of time variafioridentify thevariation of the execution

time, the experiments performed multiple timgased on the experiments a timing model is implemented
and tested. Finally, a scheduling algorithm is proposed that improves the time predictability of the GPU.

1.3. Organization of the report

The rest of the report is organized as follows. First, in section 2 background information for the Fermi
GPU architecture and the GPGHim cycle level simulator is given. Next, in section 3 the related work

for time predictability is presentedn laddition, related studies on performance analysis on GPU are
discussed. Furthermore, section 4 introduces the concept of time predictability of hardware architectures
and discusses the sources of timing variation in GPUs. Section 5 presents the eipdoméme
guantification of the sources of time variation for the warp scheduler, scratchpad memory and the global
memory. In section 6 the timing model for the warp scheduling of the instructions is illustrated. The
scalability of the model in terms ofumber of warps is discussed. In section 7, the model with the
Convolution separable from CUDA SDK is tested and is compared withadttte-art performance
model. Finally, section 8 describes the variable rate warp scheshaesection 9 concludes treport and
presented the future wark

10

2. Background

Initially, the GPU architecture is describadsection 2.1Next, in section 2.2background information is
given for the software motléor the GPU architecturdzinally, the GPGUSIim cycle level simulator is
presentedn section 2.3

2.1. GPU architecture

For this assignment, we are going to use the Nvidia Fermi GPU architecture. Fermi is not the latest
architecture of Nvidia. The timeline iRigure 2 shows that the Kepler and Maxwell architectures have
been introduced in 2012 and 2014 respectively while Fermi was introduced in 2009. The Fermi
architecture was chosen because no dsleerand simulator exist for Kepler and Maxwell. For Fermi, the
asFermi assembler and the GPG&ith simulator are available.

Tesla Fermi Kepler Maxwell

2006 2009 2012 2014

Figure2 NVIDIAtimeline of different architecture

The GPU communicates with the CPU by peripheral component interconnect (PCI). The CPU sends the
data through PCI to the GRBigure3). The GPU process the data and sends back the results. The Fermi
architecture has 16 SMhat are connected between each other with an interconnect neltwaddition

there is a level 2ache memory which is shared between the cores.

SM SM|... SM
Core 0 Core 0 Core 0
CPU GPU
L2 L2 e o L2 DMA CPU
PCI I I I
Figure3 CPU and GPU
communication GDDR GDDR (- - «| GDDR

Figure4 Overview of the Fermi GPU architecture

In the Fermi architecture, each SMdure 5) has two warp schedulers and two instruction dispatch units,

so two warps can be executed concurrently by exploiting thread level parallelism (TLP). In addition, there
is a register file ofLl28KB. In this way the different threads can have their own registers. Since every
thread has its own register the cost of the context switching is eliminated. There are 2 sets of 16 cores, 16
load store (LD/ST) units and 4 special function units (SFW)edkecute the instructions.

11

Figue 5 Block diagram of the multithreaded SIMD Processor of a Fermi GPU (Baken from[1]).

Furthermore, every SM has 64KB of-ohip memory that can be configured as 48 KB of shared memory
and 16KB of L1 cache, or the oth@ay (Figure6). The Fermi architecture has a Level 2 cache memory
which is shared between the SMs. The L2 cache memory is unified for instructions and data. It follows
the traditional speed hierarchy but inverts the kieearchy(Figure7). Considering althe 16 SMs of the

Fermi architecturehie lowest level is bigger than leveatd level 2 cache memories

L1$D Scratchpad

Figure6 Two $hared memory
configurations

Register File
16 * 128KB = 2048KB
(SRAM)
L1 [wmms=ce]
L2 e

Figure7 Cache memory hierarchy of Fermi GPU architecture which uses the second configuration of figure

12

2.2. CUDA programming model

Nowadays, GPUs are not used only for graphics. GPUs are also used togpleedompute intensive

parts of general purpose progr® The massive parallelism of the GPUs can be used through
programming models likeompute unified device architectut@ yDA) and OpenClfor accelerating the
programs. The programmer can choose which parts of the algorithm are better suited for mapping on the
GPU in order to take advantage of the highly parallel hardware that the GPUs offer. CUDA and OpenCL
provide abstraction to the pr@nmer for scratchpad memory, thread ID and synchronization.

The central processing unit (CPU) and GPU have separate memories. Data should be transferred
explicitly from one device to the other. The memory transfer hampers thegpdfeithe computatioon
the GPU is small.

An example of executing a program at a GPU is presentEgyume 8. Initially, the normal execution of

the program on the CPW presented in (A). It consists of a part that can be parallelized and two
sequential parts, at the beginning and at the end. The parallel part of the program can be executed on the
GPU as is shown in (B). First, it is required to transfer the data fier®PU (host) to the GPU (device)
through direct memory access (DMA) (host to device or H2D). After the parallel execution of the
program on the GPU the data have to be transferred back again to the CPU (device to host or D2H). The
potential speedp, depads on cost of the transferring of the data between the CPU and the GPU and on
the level of parallelism that exists in the program.

(A)
to t1
CPU > > >
Sequential Parallel Legend
part 1 A: Execution on CPU.
___ 9 B: Acceleration on the GPU.
(B) — 1 H2D: DMA from host (CPU) to device (GPU).
- 1 D2H: DMA from device to host.
——
GPU —_
— vi ooy - O
— n p T T
— ra—
«—
H2D,” * D2H
tg 4 \ tz
CPU — —
_—
Time

Figure8 Example ofCPU executioifA) and GPU acceleratio(B).

The Nvidia Fermi GPU is a scalableander architecture and consists of a set of multithreSdedming
Multiprocessors (SM)A multiprocessor employs a unique architecture ca&l?dT (SinglelInstruction,
Multiple-Thread) The threads are independent elements and can be executed in daréfiel SIMT
architecturehe multiprocessor manages, schedules, and executes threads in groups of 32agzdled
The warps are group in thread blocks. A thread ldoskmapped to an SM, so all the warps of a thread
block are executed in one SHigure9). The hierarchy of threads provides flexibility to the programmer
and as a result improves the programmability of the GPU.

13

Thread Warp Thread Block Thread Block Mapping
Ti ToTs T

: 31 : W0 *r— Wl e :

l : 1 l : W, e——mmo \W; o——o : SMO SMl SM15
\ | e« o o ¢ o | =1 =3
: P W oW, — | mmes| mmew ° ° |E=Ew
"W oo ! TB, | | =] |E=SEw L= X =

Figure9 Hierarchy of the threadswarps and thread blocks the Fermi GPU architecture and theapping of thethread
blocks to different SMs

To clarify more the how the GPU is programmed an example from Hennesy and Paterson book [38] is
used. Initially, the code in C is presented; it calculates double precisiplusX. The code in C is going
to be executed sequentially, so the iterations of the loop are executed one after the other.

daxpy(n, 2.0, X, y);

void daxpy(int n, double a, double *x, double *y)

{
for (int i=0;i<n;++H)
ylil = a*x[i] + yil;

® NGO A WMo

The CUDA code that has the same functionality with the code in C is presented below. Note that in this
example it is not presented the transactions of the data to and from th& GRidtinguish the code for

the CPU (host) and the code for the GPU (device),
respectively. For the functions executed at the GPU the number of thread blocks and threads has to be
determined. The syntax o a | | a function for the GPU is extenc
di mBl ock>>> (parameters)o, where dimGrid is the n
of threads per block.

CUDA provides identifiers for the thread blocks (blockldxax)d the threads (threadldx.x). In addition,
the size of the thread block is given by @bl ock
identifiers (line 11) the threads can be distinguished. For example, for two thread blocks and thread block
sizeof4 the value of variabl e Tdbleh mBas utsher gv dili e ass i
arrays, all threads can process a different data etdmeparallel.

Tablel Example of index calculations.

T, {0]1]12|3]0]1][2]3
TB;i|0|0|0|0|21]|1]|1]|1
i [0]1]2]|3]4|5]|6]|7

14

__host__
int nblocks = (n+255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, X, Y);

NG~ WNRE

__device__
void daxpy(int n, double a, double *x, double *y)

[T
N o

int i =blockldx.x * blockDim.x + threadldx.x;
it (i<n)y[i] =a*[i] + v[i;

=
w

2.3. GPGPUSIm

The GPGPWSiIimis cycle level simulator designed to mimic the behavior of the Tesla and Fermi GPU
architectures [3] [4]. The user can choose between these two architectures and select a range of
parameters, such as warp scheduler, size of the caches etc. The impiemehtae simulator is based

on the documentation from Nvidia, patents and in some cases assumption, since Nvidia does not provide
all the details of its architectures. A high level architecture of the GP&RUs presented iRigure 10.

The architecture is split in two parts: first there is the SIMT femd (green) and second the SIMD
datapath (yellow). A more detailed view of this architectugiisn in appendix C.

Initially, in the SIMT frontend the instructions are fetched from the instruction cache. The instructions
are decoded and stored in the instruction buffer. Next at the scoreboard the instructions are checked for
read after write (R&) and write after write (WaW) dependencies and the scheduler decides which warp

is going to be issued to the SIMD datapath. Furthermore, the -Siisidk is used to handle the branch
divergence, by storing the diverge and converge points of each warp.

Branch Target PC

Fetch |« SIMT-Stack
— I” >
I-Cache [~ Decode
Operand SP1 *
core
Femg zc:gstr- f Board Ilm Collector Mg
y Odd Warps Scteduler 4P SFU [
a (16 Banks)
MEM
Even Warps Scheduler 4= [TiD] >
Dane (WID)

Figure 10 Architectural high level block diagram @&PGPLSim (Taken from [4])

The SIMD datapath consists of the opetaallector, two sets of 16 cores or streaming processors (SP) in
the context of GPGP3im, 4 special functiomnits, the shared memory (scratchpad and level 1 data
cache). Tie operand collector is a set of buffers and arbitration logic used to provide the appearance of a
multi-ported register file using memory of multiple banks of single ported RAMSs.

15

16

3. Related work

In this section the related work for the time predictability is presented. Furthermore, the related work for
the timing analysis of Fermi GPU architecture is shown. For the timing analysis there are two types of
related work, performance analysis fitve WCET (Worst Case Execution Time) and performance
analysis for the average case.

3.1. Time predictab ility

The problems that can occur in the WCET analysis of a system are described in [7]. More specifically, it
describes how to decompose the problesuintasks and it provides techniques that are used to define the
upper bound of the execution time. It is shown that a given WCET analysis tool may not consider all
these subtasks or may solve the same subtask in different ways. In addition it is shoheghatessor
behavior analysis significantly depends on the complexity of the processor architecture.

Furthermore, threats of predictability and proposes methods that can improve the time predictability are
described in [9]. The sources of unpredidigbare categorized in architectural level, software level, task
level and distributed operations level. In addition sources of unpredictability that may occur through the
interaction of these different levels are presented. For every category, tiredeahich can be threats

for time predictability are described.

The access time to efhip memory is another source of time variability because it can vary from access
to access. It depends on the dynamic memory traffic pattern and the arritr@@snaémory request. The
memory controller is responsible to serve the memory requests. The memory controller can be static or
dynamic. Static memorgontrollers serve the memory requests with static scheduling. Dynamic memory
controllers adapt to the diffent memory traffic patterns. Static memanntrollers are time predictable

but not flexible to memory traffic changes and the opposite holds for the dynamic. A memory controller
with static and dynamic characteristics that provides minimum throughmltmeximum latency
guaranties is proposed in [33].

Architectures with time predictable behavior are presented in [14] [15]. The main idea of these
architectures is that they are composed from predictable subsystems. These architectures with the
composition of predictable subsystem they have a predictgbtens. In addition, fine grain muiti
threading is used in order to preserve the isolation of the execution. Time division multiple access
(TDMA) scheme is used for the memory accesses. Also, the SPARC instruction set architecture (ISA) is
extended with tirmg instructions that provide lower and upper bounds for the execution time [16].
Finally, time predictable architectures are accompanied with a set of WCET tools and a compiler that is
specific for these architectures, in order to interpret the timistguctions appropriately (i.e. time blocks

[17]).

On the ontrary, Alan Burns et al argubat it is not necessary to have time predictable subsystems in
order to have a time predictable system [18]. It proposes to have hardware components with independe
random behavior (i.e. random replacement policy in caches). In this way the system can be analyzed more
easily through probabilistic methods.

17

3.2. Fermi GPU timing analysis

To analyze a processor at a low level, it is required to have accurate documehgdtaescribes all the

design choices for the architecture. The Nvidia Fermi whitepaper does not provide details about the
architecture [1]. More details regarding the control flow, cache and TLB (translation lookaside buffer)
hierarchy for the Tesla aritbcture through detailed microbenchmarking are given in reference [2]. The
results can be used as an indicator for the Fermi architecture. Furthermore, a cycle accurate simulator that
mimics the behavior of the Fermi architecture is implemented in [3]44hroughput analysis that is

made with microbenchmarks implemented in assembly level is given in [5]. This paper also describes
how a register file bank conflict may be produced for the Kepler architecture [6]. First we are going to
describe the availdd literature that was performed for WCET analysis on GPUs. Afterwards, we are
going to discuss some studies for average performance analysis execution time.

A hybrid analysis for GPU kernels is presented in paper [24]. The analysis was built asrattgwlod
GPGPUSIm. Hybrid analysis inserts time stamps at particular program points, called instrumentation
points. The testing method was based on paper [25] and traces were produced for the kernel. The traces
are a sequence of tuples of the shagt)) where jis an instruction point identifier angis the time of
execution. The traces are processed to calculate the WCET. This work does not analyze the hardware
architecture. It is more general so it does not take into account any of the spetifiesfed the GPU
architecture.

Next, a static timing analysis for GPU kernels based on the method abstract CTA (cooperated thread
array) simulation that they introduce is presented in [26]. The work is focused on one thread block only.
Static divergencanalysis was performed. The mBIMT machine based on the research work [27] was
used. Although, no experimental verification was presented that uses this method.

Finally, an analytical model for the execution time of GPU programs is proposed in thefwtmkg and

Kim [28]. The components of the model are to estimate the memory warp parallelism (number of parallel
memory request from different warps) and the computation warp parallelism, the number of warps that
can be executed during a memory accehbg. Model is general and does not make any assumptions for
the architecture. The results have been compared with multiple architectures with 5.4% and 13.3% error
for microbenchmarks and GPU cpuiing application respectively.

18

4. Time predictability for GPUs

An introduction to time predictability is given in this section. The different interpretations of time
predictability in literature and in this work are presented. Next, the hardware components of the Fermi
GPU architecture amiscussedor time variable behavior.

4.1. Introduction to time predictability

Realtime systems are computing systems that have to react within precise timing constrains. Thus, the
correctness of a retime system depends not only on the value of the computaticadmubn the time

that the results are produced [8]. In the context oftiesd systems a worst case execution time (WCET)
analysis is performed in order to guaranty a stable and analyzable behavior of a system, while modern
architectures are optimized fahe common case (average case). To optimize the common case,
complicated techniques are used like speculated methods (branch prediction, prefetching -efe.), out
order execution etc. Even though, these methods improve the performance of the systeranglignif

they are very difficult to be analyzed through WCET analysis methods.

To clarify more, an exampleased on the examples given in [iSpresented ifrigure11. First, in this

example the best case execution time (BCET), average case execution time (ACET) and WCET are
consider to be the execution times measured. In addition, the observed execution time is measured
through experiments for aagific datainput on a specific processor. The lower and upper bound is used

as the theoretical calculation of the best and worst case execution times. In order to provide a system that
would always respect the timing restrictions, the upper bound sheuisdal as worst case guaranty.

Initially, the processor A is a modern processor which is optimized for the common case. It uses
mechanisms that improve the average case, like caches. Caches are difficult to be analyzed because they
are hardware controlieand the prediction of a miss requires detailed knowledge of the current state of
the cache. In addition, architecture A has an average case execution time (ACET) which is close to the
best case execution time (BCET). Since it uses mechanisms thatfadtdd be analyzed this means

that the difference between the worst case execution time and the upper bound is significantly large since
more pessimistic choices have to be made which will lead to a more conservative and less accurate model.

The archiecture B inFigure1lis a simple architecture that does not use mechanisms which are difficult

to be analyzed. The average case is higher compapeddessor A since it does not use mechanisms that
improve the common case through mechanisms that are difficult to be analyzed (i.e. branch prediction,
prefetching). The average case is more balanced between the BCET and WCET compared to processor A.
Furthrermore, since the architecture is simpler, it means that can be analyzed more precisely, so the
difference of the WCET and the upper bound is smaller compared to processor A. From this example it
observedthat, even processor A has a smaller WCET coetp&n processor B, the upper bound of
processor A is higher compared to processor B. So although processor B is slower on average, it can
provide better worst case guaranties.

19

min Observed time max

Optimism 1 Pessimism
I_H ' ' ' A ™~
| | | | | | | >
| | | | | | [
Lower BCET ACET Uppkr
g g WCET, Ppp
Bound, Bound,
min Observed time max E
r-—-————~"~=~"=7"777777/77777 | !
1] | I : R
| | | | | | [!
Lower BCETs ACETs WCET, 1 Jpper
Bounds | Bounds !
! i

WC guaranty; WC éuarantyA

Figurell Timedistribution for two types of processor. Processor A is modern processor optimized for the average cas
Processor B is a simple processor that can be analyzed more precisely.

A time predictable architecture should have a limited number of states. In this way it can be analyzed for

any possible scenario. On the contrary, WCET analysis for a complex architecture, like processor A, it

might be infeasible. For WCET analysis all the possible states of the system have to be analyzed. For a
complex system fh leads to state space explosion and make the analysis infeasible [29].

To decompose the problem, the timing barrier that is proposed in [10] can be used. If it is possible to
bring the system in a known state periodically by using the timing barriethbestate space is divided in
smaller analyzable pieces.

For instance, a way to implement a mechanism like that on a GPU would be: periodically transfer parts of
the code and data that are needed for a specific amount of time to the scratchpad nfersmatdhpad
memory is software controlled and has time predictable access times. So, the system would work on code
and data that are in a predictable memory, while at the background the data can be transferred from the
global memory to the scratchpad nwm

Currently there is no stable formalization for time predictability in literature. Formalizations of the time
predictability are compared and a new formalization is also introduced in paper [10]. A new
formalization for time predictability is propasein [11] where it differentiates the sources of
unpredictability to software and hardware related. Furthermore, [12] introduces the deviation of cycles
per instruction (CPI) as a metric for time predictability. All of these formalizations are generdlegnd

do not make any assumption regarding the type of the architecture, so they can be used also for GPUs. In
addition, in [13] it is reported that time predictability depends on the hardware, the compiler and the
WCET tools but no formalization is given.

20

Based on the observation until now, we distinguish the following cases for the different type of
executions:

- Constant timing behavior. A program with the same input executed on the same architecture always
takes the same execution time. In other wor@sWCET and BCET is the same and the execution
time can be precisely statically predict®dCET = BCET)

- Variable tight bounded timing behavior: A program with the same input executed on the same
architecture can have a deterministic number of differeetgion times. The execution time for all
the different cases can be precisely statically calculated.

- Infeasibility of the timing analysis: The complexity of the architecture is so high that the analysis is
not feasible. In order to provide precise timing guaranties it is required to investigate all the possible
states of the system. This type of analysis for a complex system leads toatatexg@osion and the
analysis is not feasible.

- Limited timing information of the architecture: In this case we do not have the required timing
information of the architecture in order to provide precise estimation of the timing behavior.

4.2. Analysis of hardware components for timing variation

The sources of time variations in Fermi GPU architecture are presented in this section. The main
hardware components of the architecture are presented and analyzed for sources of

Warp scheduler and scoreboard

The Fermi architecture has two warp schedulers (odd and even) per SM and one instruction dispatch unit
per scheduler. The scheduler chooses one warp of 32 threads based on the scheduling algorithm and
issues it to one of the set of 16 SP, 16 load/stotts oni4 special function units. The warps are executed

in two cycle lock step fashion. Initially, the first 16 threads of the warp are executed and at next clock
cycle the other 16 threads are executed in the same SPs.

Figurel12 shows an example of the two cycle lock step execution of two SP instructions. At the first clock
cycle (CC1) the first 16 threads of the two warps are executed at the twol &t At the second cycle

(CC2) the next 16 threads are executed at the same SIMD lanes. A similar procedure is followed for the
load/store units. So every two clock cycles, two warps from different schedulers can be executed.
However since we have onlySFU it is required to perform 8 steps in this special case.

21

Odd warp
scheduler

Even warp
scheduler

Dispatch Unit

Dispatch Unit

16T, !
2n+l WZm
CC1 CC2 CC1 Ccc2
SP x16 SP x16

Figurel2 Example of twelock-step execution for two warps.

The warp schedulers of the Fermi architecture use the loose round robin (LRR) algéfitama load

from the offchip memory is executed the kernel continues with the nextigti®ns until the instruction

that has read after write (RaW) dependency with the ilostduction If there are enough instructions to

hide the memory latency the warp is scheduled in RR. If the data from the load are not ready, the warp
stalls and anher warp is scheduled. The memory latency can be hidden if there are enough warps that
can be executed.he choices of the warp scheduler can change the scheduling order and as a result the
overall execution time. In Fermi architectwsesthe Loose Round Robin algorithm. When a warp stalls,
another warp is scheduled.

To sum upthe warp scheduler, checks the scoreboard for data dependencies. Next it checks the available
execution units in order to choose the instruction that can be detiediurthermore, it checks the
address of the instructions in order to preserve the order of the instruction, since the instructions of a warp
have tobe executed irorder.Finally, based on the scheduling algorithm chooses which warp to schedule
(Figure 13).

Warp Scheduler

Check
Dependencies

Check Available
Execution Units
[]
Check Order of
Instruction
[11
Schedule
Algorithm (LRR)

**“ v \ 4 v

| Warp | Address |Instruction| Operand

Issue

Figure13 Overview of the warp scheduler

22

The scoreboaris a buffer shared between the two warp schedulatslarthe scoreboard there can be
many entriegor every warpAn examplebased on the scoreboard organization given in [g8)ow the
scoreboard is updated is given beldfnthe scoreboard algorithm updates the information irofarder

then it can be different from execution to execution if the requests for the updatdrae different way.

If the update requests arrive in a different way from execution to execution then the warps will be ready
in a different order from execution to execution. Consequently they will be scheduled in a different order
from execution toeecution.

0. LD.E RO, [100]
1. ADD R3,R2,R1
2. MAD R7,R3,R0,R4
Warp Address Instruction Operands
0 0 LD.E - -1
2 0 LD.E - -1
4 0 LD.E - -1
0 1 ADD - 111
2 1 ADD - 111
4 1 ADD - 111
Warp | Address Instruction Operands
0 0 ADD -1 1)1
2 0 ADD -1 1)1
4 0 ADD -1)1
0 1 MAD 0|0 |1
2 1 MAD 0|0 |1
4 1 MAD 0(0]|1
Warp Address Instruction Operands
0 1 MAD 0|1
2 1 MAD 0|1
4 1 MAD 0|1 |1
Warp Address Instruction Operands
0 1 MAD 1
2 1 MAD 1
4 1 MAD 1 1 1

23

[SdQa FaadzyS GKIG oS adl
a scoreboard with 6 positions.

Initially, the first 2 instructions of the 3 warps are in
the scoreboard. Both instructions can be executed
since there is no data dependency. The instructions
are executed in order so the load to the global
memory (LD.E) is going to be executed first. We
assume that the warps are chosen with LRR algorithm.
So WO is going to be executed first, after 2 cycles W2
and after 4 cycles W4.

Since LD.E has been executed, it is removed from the
scoreboard and multiply-add (MAD) instruction is
inserted. MAD has RaW dependency with LD.E and
ADD so the operands are not ready (0).The ADD
instruction can be executed since it does not have
dependency with LD.E.

Now that the ADD instructions is finished the register
Gwoé¢ A& NBFRe &2 GKS TaA
register is updated to 1. We assume that LD.E has big
latency so the source operand that has RawW
dependency with LD.E is not ready yet. Therefore, the
MAD instruction can be executed.

Now we assume that the global memory respond with
GKS RFEGF FYR GKS NB3IAa
instruction can now be executed.

Operand Collector

The register file of the Fermi GPU architecture is huge compare to theoseateCPUSs. It has 32K of

32bit register which is 128KB. Since there are 16 SM in total there are 2MB are used for the register file.
To save energy and area and to have theaappee of multiple ported register file is implemented as
multiple banks of single ported RAM. An arbitration mechanism is used to minimize the register file bank
conflicts. The arbitrator queues the warps and selects up to 4 register file requestsnibtaprdaluce

bank conflicts. The algorithm of the arbitration mechanism is not provided by the Nvidia. The arbitration
mechanism can influences the time behavior of the GPU since it can determine the execution order of the
warps. If the choices of the atfzition are not deterministic then the order of the warps can change from
execution to execution.

(from instruction decode stage)

Y i o _—
Bank 0 ol 3 ———= > \ | |
- Ban | - - gl 1 P G T = |
= e |
W3 dd |
o o e - | B
-+ Bank 1 - ™ g M) W B |
NS SRR e —
Arbitrator u = > B
o P >
+« Bank2 - | |= . Sl 2[10, 0, ., O [
[N e, 2, T [
UI—]— SEEEEEE o |
W add I
.. . - » el 21, 2, ., 6 |
* Bank 3 | < g R ; EI
[S |
Single-Ported . SIMD
Register File Banks Crossbar Collector Units Execution Unit

Figurel4 Operandcollector taken from [4]

On-chip scratchpad memory

In the Fermi architecture, scratchpad memories arailable. Scratchpad memories are software
controlled and have time predictable behavior compared to the caches while they have similar
performance. The programmer is responsible to allocate the data to the correct memory in order to have
the desired peofmance while in caches the memory management is performed automatically by the
hardware.

The scratchpad memory has 32 banks that can be used in parallel by 32 threads (one warp). When all the
threads access a different bank, the access time is detéicranid is always the same for all the threads

in a warp. A bank conflict occurs when multiple threads of a warp access a different address that belongs
to the same bank. The execution time varies depending on the number of bank conflicts but it is still
deterministic.

The address patterns determine the number of the bank conflicts. A modulo 32 operation on the address of
the shared memory is performed in order to find which bank is going to be acéessexhmplerable?2

Table3 andTable4 show the bank conflicts for stride 4, 16 and 32 of the first 8 threads of a warp. The
tables are organized as follows; the thread ID of the threads in thasnagsented in the first column.

Next, the memory address is shown in the second column and the last column show the bank number. For

24

stride 4 there is a bank conflict between thread 0 and thread 8. Both threads of the same warp access bank
0. Similarly,for stride 16 threads even threads access bank 0 and odd threads access bank 16 so in total 16
bank conflicts for a warp of 32 threads. Finally, for stride 32 all threads access bank 0 so there are 32
bank conflicts.

Table2 Bark conflicts Table3 Bank conflicts Table4 Bank conflicts
for stride 4 for stride 16 for stride 32

Thread ID | Address | Bank Thread ID | Address | Bank Thread ID | Address | Bank

If the number of bank conflicts can betermined at compile time, then also the execution time can be
determined. Techniques with deterministic behavior [30] that minimize the bank conflicts improve the
execution time without increasing the complexity of the system.

The analysis to determintbe number of bank conflicts increases the complexity of the whole analysis of

the GPU. There are cases where the scratchpad memory addresses cannot be defined at compile time. For
example, the index to the shared memory is given as input to the kertigls kase it is required to

assume the worst case and count all the unknown addresses as bank conflict. This approach leads to a
pessimistic assumption for the worst case execution time.

The shared memory can also used for atomic operations. Fadpieic operation, first it is required to

lock a memory location in the shared memory. Next the operation is performed and finally the result is
written back and the memory location is unlocked. If multiple threads are trying to perform an atomic
operationto the same location, they have to be serialized. A detailed model for atomic operations can
used [30] to precisely define the execution time of a kernel with atomic operations

Caches

Caches are one of the biggest sources of time variations for CPide. @dahe works that analyze the

problems of time predictability with caches are presented in [7, 9, 10, 15, 20, 25]. Currently, GPUs hide

the memory latency by executing concurrently many threads. For GPUs the performance does not depend

on caches like OPs. Typically the scratchpad memory and high level of concurrent execution of threads

are used to hide the memory | atency of the gl ob:
allocate the data in the fast memory. L2 cache is used for communicitice, L2 cadh belongs to the

global memory and is common for all threads. The replacement policy that is used for all the caches in

Fermi GPU architecture is not described in [1]. LRU replacement policy is assumed for Tesla architecture

[2]. It hasbeen shown that LRU is the replacement policy that is more suitable for predictability [20],

while in [19] it is proposed that locally deterministic replacement policies can favor time predictability.

25

The Fermi architecture has two levels of instructind data caches. There are separate level 1 instruction

and data caches. Having the instructions and data in different memories improves the time predictability

of the system since there is not interference of instructions and data. On the contrargli¢aeidthe is

unified for instructions and data. The analysis on unified caches is more complicated since we cannot
separate the analysis for the instructions and data.In addition constant cache is used to keep the data that
have values that are not chamgi The separate memory for constants, favors time predictability since

data that cannot change can be placed there and the memory accesses can have deterministic access time.
Since a dedicated memory is used for this type of data it is expected to Fadle BrisS rate compared

to a typical data cache.

GPUs are becoming more and more general purpose so it is expected to see caches to play a more
important role in the future. Scheduling algorithms that take advantage oiventerand intrawarp

locality have been proposed to use efficiently the cafdieexample [22]. To extent our analysis in order

to take into account the cache it is required to have a separate model for the caches like [37]. By using a
cache model we can calculate the hit rate andnrilse rate and as a result more accurate estimations for

the best case and the worst case execution times can be given.

SIMT stack - Control flow mechanism

The control flow in the GPU architectures is different compared to a CPU. Predicate registciad

are used in order to keep track of the divergence and convergence points of a thread block. The
instruction in an IFTHEN-ELSE statement are executed by the SIMD Processor but only some of the
SIMD lanes are enabled for the THERNhstructions andamne lanes for the ELSE instructions.

In other wordsthose lanes with the predicate set to true execute the instructions and store the result, and
the other SI MD Lanes donot perform an operation
instructiors use the complement of the predicate (relative to the THEN statement), so the SIMD Lanes
that were idle now perform the operation and store the result while their formerly active siblings don not.

At the end of the ELSE statement, the instructions aprediicated so the original computation can
proceed. Thus, for equal length paths, afT HEN-ELSE operates at only 50% efficiency. A similar
procedure is followed for the nested IF statements.

This control flow scheme is advantageous for the time prdylityaof the system since does not use any
speculative method like branch prediction and the execution time of a branch can easily be predicted. In
addition, the use of the predicate registers simplifies the control flow analysis and as a result ghe timin
analysis of the GPU.

Off-chip global memory and interconnect

The global memory is GDRAM ofthip memory (Graphics Dynamic Randgkacess Memory). It is a

special case of DRAM optimized for high bandwidth. It is common for all the SMs. To calculate the
latency of the global memory it is required to know the state of the memory, the contention of SMs
interconnect and the interference between the accesses form the different SMs. Therefore, the access
time to the global memory can be varied from executogxecution.

26

GPU has a separate affip memory from the CPU as mentioned, before. It is shared between all the
SMs. The memory accesses can be coalesced which means that accesses to consecutive memory location
can be combined and performed as onentégnory access. The size of a coalescing memory access is

128 bytes. In GPGPA3im, the memory controller is configured as an-@uDrder (O00) First Ready
FirstCome FirstServe controllerWe have quantified the variation of the execution for a subséesé

sources of variation. More details are given in Section 5.3.

4.3. Conclusion

In this section we have made an introduction to time predictability. We categorize the different cases of
time predictability lased on the timing behavior pfograns thatexecuteon samearchitecturevith same

inputs. Next, the main hardware components of the Fermi GPU architecture were presented and discussed
for time variations.

We choseto analyzethe warp schedulesince the warp scheduler determines the starting ¢ihtbe
instructionsand influence the total execution timdn addition,we chose to analyze also theratchpad
memory and the global memanstructions since they are frequently used in GPU applications

Caches can influence significantly the vddatin the execution timbut we did nottreatthem in this
report Caches have high complexity and require a lot of time to analyze them in dgtaihches have
been analyzed in [37]. The model for the caches can be intergwettedhis work in the fture
Furthermore, L2 cache is required also to be analyZ2daches are even more comptexanalyze them
than L1since they aresharedbetween the SMsand unified for instructions and datéo avoid the
complexity of L2 cache we would design the L2 cache to have random betByibaving random
behaviowe can analyze them with probabilistic methftH.

27

28

5. Quantification of time variation in Fermi GPU architecture

In this section we fagsed on the warp scheduler, shared memory and global memory and we quantify the
time variation for the real hardware. The results of the experiments compared with the SRG&}dle
level simulator.

5.1. Experimental Methodology

To analyze the behavior di¢ GPU hardware architecture at adewel, it is required to have detailed

and accurate information. In some cases, the documentation is not available or precise. In order to
describe the worst case scenario of the system it is required to be abledctléhe possible states that

the system can be in, therefore the limited documentation makes the analysis for WCET very difficult.

Since for Fermi architecture the timing details are not available, we have to analyze its behavior through
experiments The goal of the experiments in this chapter is to identify and quantify the sources of the
unpredictability in a GPU. The experiments have been performed through microbenchmarking. The
microbenchmarks are implemented in assembly language with thetuseef fiasf er mi 6 [36] a

The code below presents the measurement method of the execution time for the microbenchmarks. A
counter is incremented at the half of the SM clock frequency and is stored thitaspécial register.

From this registerweerad t he 32 |l east significant bits with t
value to gener al purpose register ARO0OO. The value
to AR40 to get the current value of the clock (I

The sameprocedure is followed after the execution of the code (lines 7 and 8). Finally, the values of
registers AR50 and AR40 are subtracted to find t
calculation of the current value of the clock followed byoa-dependent operation takes 30 cycles.

S2R RO, SR_ClockLo;
SHL.W R4, RO, 0x1;

/I code to be measured

S2R R1, SR_ClockLo;
SHL.W R5, R1, 0x1,;

© o N o0k WD P

=
I

IADD R6,R5, -R4;

[
[

To verify the behavior of the hardware we performed the same experiments@P@RUSIM. The

direct usage of assembly language in GP&Id is not supported. The microbenchmarks were
implemented in the parallel thread execution (PTX) instruction set. PTX is an intermediate instruction set
that is compatible with multiple GPU geneoats. The PTX code is optimized and translated to the target
architecture instructions. For our purpose the compiler optimizations do not affect the analysis due to the

29

smal | number of i nstructions. Thus, PTXcedefotike i n i
GPGPUSIm are comparable.

The execution time was measured through inline as
and is presented bellow. Initially the registers
clock value before and after the code that we want to measure (timel and time2). The values are
subtracted and the resul't is stored in variable 0
the inline code. | n tvhairs achd see fift %0me _irsesmapped to t
12, asm(

13, "\n\t"

14. ".reg .u32 timel; \n\t"

15. ".reg.u32 time2; \n\t"

16. /IRegister declaration

17.

18. "mov.u32 timel, %clock; \n\t"

19. "shl.b32 timel, timel, 1; \n\t"

20.

21. /lcode to be measured

22.

23. "mov.u32 time2, %clock; \n\t"

24. "shl.b32 time2, time2, 1; \n\t"

25.

26. "sub.u32 %0, time2, timel; \n\t"

27. b

28. :"=r"(time_res)

29.);

The tool chain to automate the procedure of the experiments is presehigdr&ll. Initially, the code

is compiled and the executable is produced. With
is produced from the executable. The code iglifrenl in order to be in shape that we can insert the
fasfermi Aicode. A Python script produces and inje

using the fAasfermi o0 assembl er we produce the CU!
i NV C C drodtice thepexecutable.

A python script runs the executable and collects the timing measurements. The results from the timing
measurements for the all the threads are collected. Another Python script formats the timing
measurements in such a way that gasy to plot them.

The procedure is automated and can be configured for the real hardware or the-SRGFPhe user has

to specify the code for measurement by using the functions implemented in Python. Finally, the thread
block size, number of threaddaks and the number of repetitions of the experiments can be tuned to
perform different types of experiments.

30

Source

nvce

Executable

cuobjdump

Py

.asm

asfermi

e

nvce
Y

Executable

Execute

Results

Collect Results

v Py

Format Results

Next experiment

Figurel5Tool chain to perform and automate the experiments.

5.2. Warp scheduler

First, we are using a thread block size3@fthreads, so there is only one warp. Two microbenchmarks
ons wer e used.ionswiheno f i

wi t h

t wo AADDO

nstruct.ii

data dependency.h& second microbenchmaudsest w o

Theresults are presented ligure16. The vertical axis shows the execution time in clock cycles and the
horizontal axis shows the number of instrucsiomhe dark blue line is the execution of the instructions
without a data dependency and the light blue is the execution with a RaW dependency. From this graph

AfADDO instructi

ons

we can see that in both cases the execution time is increased linearly with a linear indreasemober

of the instructions. The execution with the RaW dependency has higher slope since the warp has to wait

until the results from the instruction with the dependency are ready.

From the CUDA programming manual [34] we know that we can scheddw avarp every two cycles.

Figure16 shows that in the case that we have only one warp, a new instruction is scheduled after 6 cycles

rst

Wi

without dependesy. From this we conclude that the HW can only schedule instructions from the same

warp every 6 cycles. Other experiments show that multiple warps can be scheduled every.2 cycles

Furthermore Figure 16 shows that when there is RawW dependency the latency increases to 18 clock
From this we can conclude that the additional cost of a RaW dependendy s 1B clock

cycles.
cycles.

31

t h

120
100
80
60
40
20

Clock Cycles

Add operations for Thread Block Size ¢

Pd

a8 /
\vAv)

48/

==g=add

74;12//‘

36

1 2 3 4 5 |

#op |

==i=add RaW

Figurel6 The eecution time of two micrebenchmarks with two add instructionsre presented. In the first micre
benchmark the instructions are independent while in the second one they have RaW dependency.

Instructions in a warp are exded in order. Since, the scheduler has to respect the order of the

instructions, there is only one schedule. On the contrary for more than one warps per scheduler the

situation is different. Warps are independent among each other, so they are schedaieidatilyn

without the need of any specific order. The scheduler dynamically chooses which warp to schedule based

on the availability of the warps. Different scheduling decisions lead to different execution times. This

behavior influences the time predictiitiiof the system.

MAD-ADDRaW
Block size 32 512 Hardware

100

80

60
40 -
20 -

Clock Cycles

01 2 3 456 7 8 9 1011 12 13 14 15
WarplD

m32
m64
128
256
m512

Figurel7 mad-add instructions with RaW dependency for different thread block sizes. Experiments on hardware

Figure 17 shows the execution time of two instructions for six different thread block sizes. For this
microbenchmark, we use a multiplyd d i

nstructi on

(AMADO)

and

an

after write (RaW) dependency. The horizontal axis presents tie ldeof the warps. The vertical axis

shows the execution time in clock cycles. We use thread block sizes of 32, 64, 128, 256 and 512 threads.

32

AL

First, it is presentedhe execution time for thread block sizes 32, 64, 128 is the same for each warp. A

warp @an be scheduled every 2 cycles but an instruction from the same warp can be scheduled every 6
cycles (this behavior is explained detailed in section 6). Consequently, between two instructions of a warp
iAO, 2 other warps <c¢an beewitsoatlinBudngihgehd exeautiort time of s a me
AAO. For thread block sizes 256 and 512 that ha

increases and varies.

MAD-ADD Raw
Block size 32 512 GPGPi$im
100
(%]
§ 80 =32
[|
g m 64
S 40 -
S 20 . 128
0 - m 256
0 1 2 3 45 6 7 8 910111213 14 15 g512

WarplD

Figurel8 mad-add instructions with RaW dependency forftirent thread block sizes. Experiments at GPG8ith

Figure 18 shows the same experiment for GPG®ith. The horizontal axis shows the warp ID of vearp

for the different thread block sizes. The vertical axis shows the execution time in clock cycles. First the
execution times for 64 and 128 thread block sizes are different compare to 32. This means that the
scheduler modeled in GPG&Im schedules the was every 2 cycles without taking into account the
restriction of the 6 cycles.

Comparison of the execution time with
block size of 32Hardware and GPGRBIim
100%
78%
80%
0, 500,
60% m Hardware
40% m GPGPUSImM
20% 0% 4% 0% 4% 170/(13%
0% 0_ 0_ -
64 128 256 512

Figure19 Difference of the execution time of thread block size 32 with the slowest warp for the different thread block sizes

Figure19 presents the difference of the slowest warp and the warp of the 32 threads configuration for the
real hardware and the GPGFim. The horizontaaxis shows the thread block size and the vertical axis

33

the percentage of the difference. First for thread block size of 64 and 128 threads the difference of the
slowest warp and the configuration of 32 threads is 4% for the GPEaRWvhile for hardwaresi 0. In
addition, the behavior of the warp scheduler for 256 thread block size is similar to hardware; the biggest
difference is 4%. For thread block size 512 the simulator seems to behave differently compare to the
hardware. The difference of the execuntiime of the slowest warps with the execution of thread block
size 32 is significant bigger. For real hardware the biggest difference is 50% while for the simulator is
78%. Therefore, the real hardware is more scalable in terms of number of warps donipai@PGPU

Sim. In other words, the real hardware can maintain better performance for the increasing number of
warps.

The execution time of the different warps is more balanced in real hardware compared to the GPGPU
Sim. The scheduler in hardware sedgmbe fairer between the different warps. All the warps experience
approximately the same amount extra delay compared to the case with thread block size 32. On the
contrary, in case of thread block size of 512 threads for GP&RUvarp 12 and 13 are muslower
compared to the other warps.

Now that we have a better insight of the warp scheduler we are going to examine it for timing variations.
By performing the same experiments multiple times we notice that for a thread block size 512 threads the
executon time can differs from experiment to experiment. More precisely, for thread block size 512 we
repeat the experiment 100 times. The results are presentéduire 20. The black line in the graph
represents the common case. From the 100 experiments 94 of them had the same execution times. The
rest of the experiments had different execution times and there is no common pattern.

MAD-ADD RaW Block size 51Rardware
100 experiments
100 -94%
80 1\ : -
60 - _
40
20

Clock Cycles

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
WarplD

Figure20 100 experiments for mad add instruction with RaW dependency executed by 512 threads (16 warps)

One of the experiments with different result was isolated to analyze its behavior in more detail. To
visualize the results better,ettstarting times for the common case and the exception are presented in
Table6 andTable5 respectively.

The first column presents the relative starting
the IDs of the warps that were scheduled by the odd and the even schetioé green boxes show the
point in time that warps reach the first AS2RO0 i

34

t

n

Since in hardware we cannot see which instruction is executed in every cycle, the red boxes presents the
cycles that wedo not know exactly what is executed. The red box can be an instruction that we cannot
identify at which cycle is executed or an idle cycle. Note that for every exception a different warp is
scheduled first. Here we check only one case since we did notl fany common pattern for the
exceptions.

Since warps are scheduled based on in LRR fashion based on the warp IDs we expected that warp 0
would reach the AS2R0 instruction first, however
itfirst Fo t he exception case the warps from the odd
cycles later compared to the warps from the even scheduler. In addition, the warps are executed in a
different order compared to the common case, which shows tkeatahchanged the scheduling order.

In hardware it is not possible to identify what event changed the scheduling order. We use the GPGPU
Sim to trace all the instruction at cycle level. The simulator has a deterministic behavior and the results
are goingto be the same in every execution. The exception case cannot be replicated, so we worked on
the common case only. For the common case we found all the sources of events that change the
scheduling order. We assume that in the exception case there wikk Isarhe types of events but in a
different quantity and at different point in time.

The simulator was modified to collect the information from the two schedulers. At deekyaycle we

monitor which instructions were executed. We performed the sqpeeiment in the simulator as on real

hardware and we collect the traces. Some characteristic parts of the execution traces, are presented in
appendi x C. From the analysis of the traces we ca

Firstly, from the traces of GPGRBim we first observe that the warps are executed in order based on

t heir warp | Ds. This behavior was different i n h
hardware while in GPGPSim warp 0 does so. Secondly, from thfermation that we collect, the warp

scheduler could be in these three states.

M Active.
The GPU executes the instructions from the different warps. After checking for Raw
dependencies at the scoreboard the scheduler can schedule a new warp evergyZlekck
other words the warp scheduler find available warps that can be scheduled.

9 Idle because of RaW dependencies.
The scheduler cannot find any available warp to schedule therefore it has to wait until a Raw
dependency is resolved. If all warps aoheduled fairly, so strict RR, then all warps have to wait
the same amount of time for their Raw dependency.

9 Idle because the execution units are not available.
The scheduler before schedule a new instruction checks if the SP and SFU are available. More
precisely, it checks the register between the
are not ready then the scheduler is not able to issue a newamdip has to wait. For instance

35

when two warps have to executed a load or store instruction, there is only 1 set of LD/ST units,
therefore, one of the warps has to wait.

From these states we relate the exception cases with the third state. Whentallsaitpsses its turn. If
the stall is not constant then the warp waits different amounts of time so it can have a different schedule.

Another explanation for the exception cases can be the register file bank conflictegiBher file is in

the operandcollector and it is organized in banks. The arbitration mechanism that ahedsahk

conflicts in the operandollector is not described in the documentation of Nvidliae register file bank
conflicts can introduce extra stall to the warps and change the scheduling order. However, in hardware we
could not produce register bank conflicts by using the access patterns that was used to produce register
bank conflicts for Kepler [5].

Tableb Starting times of the warps Table6 Starting times of the warps
for the two schedulers, common for the two schedulers, exception
case case

Clock Cycles Clock Cycles | Odd Even

36

5.3. On-chip scratchpad memory

In Figure21the latency of 10 loads (LDS) and stores (STS) is presented. The horizontal axis presents the
number of operations (LDS and STS) and vertical axis presents the time in clock cycles. In both cases the
execution time is increased linearly with linear inseaf the number of operations. Furthermore, it is
shown that the store has higher sloop compared to load. A new load and store can be performed to the
shared memory after 26 and 30 clock cycles respectively.

Latency of shared memory instructior

350
300
250
200
150 —4—STS

100 -
50 —=—1DS

Clock Cycles

1 2 3 4 5 6 7 8 9 10
Number of instructions

Figure21 Latencyfor shared memory instructions

Figure22 shows the execution time of memory access to the shared memory for one warp when we have
bank conflicts. Onfte horizontal axis is the stride and on the vertical axis is the execution time in clock
cycles. It can be seen that the execution time of load and store to the shared memory increases linearly
with the number of bank conflicts. For stride 64 and 128 we kize same number of bank conflicts with

stride 32 so the execution time remains constant.

In addition, when we performed a store and a load to the shared memory with RawW dependency the
execution time is almost the same (24 cycles higher) compared umaleting the load and store
execution time. So the execution time for the bank conflicts remains the same when loads and stores are

used interleaved.

37

HW shared memory Bank Conflict

2500
& 2000
o
3 1500
0 —o—LDS
(&)
E 1000 o1
500 STS LDS RaW
0
2 4 8 16 32 64 128 |
Stride |

Figure22 Execution time of bank conflicts to the shared memory

5.4. Off-chip - Global memory

Similarly to the shared memory the latency to schedule loads and stores to the global memory is presented
in Figure23. Fird, it shows that the load takes much more time compare to the store because of the write
buffer that we mention before. The slope of the lines defines the time that is needed to schedule a new
instruction. So, for load and store we have 370 and 34 clat&sespectively.

Latency of global memory instruction:

700
600
500
400 -
300 o—ST.E
200)
100

Clock Cycles

1 2 3 4 5 6 7 8 9 10
Number of instructions

Figure23 Latency for global memory instructions

Figure 24 presents the variation of the execution time from experiment to experiment of the load
instruction to global memory for thread block size of 512 threads. The threads access consecutive

38

memory accesses. The horizontal axis show the warp ID of the warpbewedrtical axis show the
execution time in clock cycles. All the experiments follow the same trend however there is a small
variation from execution to execution. This means that the warps of a thread block access the main
memory in the same way in dlle experiments but some other factors influence the execution time. The
other factors can be the number of pending request, contention of the SMs interconnect, refresh rate of the
global memory etc. From these experiments it is not possible to deterxaictty ¢his time variation. A

detailed model of the memory is required in order to define precisely this variation.

Global memory Load Block size 51:

450

400 __?Pl\ W\ ‘- A"—/“\\:I:_

350 —Expl
5 300 —m—Exp2
3 250
é 200 ——EXp3
O 150 —Exp5

100 Exp7

50 Exp8

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WarplD

Figure24 One load to the global memory, 8 experiments.

Figure25 shows the execution time of different experiments for a store instruction to the global memory
for thread block size 512 (16 warps). On the horizontal axis is the warp ID of the warps #ra on
vertical axis is the execution time in clock cycles. First it can be seen that for one execution (for instance
the blue line) warps with warp ID 4 and 14 have different execution times compared to the other warps.
The biggest difference is 100 cyclé¥e have checked for 32, 64, 128, 256 and 512 thread block sizes
and this behavior was appeared only for the 512 which shows that the number of warps influence the
timing behavior.

Due to the big difference in execution time and the fact that this prablgmesent for only for great
number of warps we assume that there is a write buffer. The data are stored to the write buffer, the
execution continues with the next instruction and the store to the global memory is performed in the
background. To our knowtige for Fermi there is no documentation about a write buffer.

Secondly, by executing the same microbenchmark multiple times there is some small variation in
execution times for most of the warps. In all of the experiments again some warps have rsidmdficar
execution time than other warps. It is not always the same warps that experience the different execution
times. If we assume that there is a write buffer as we mentioned before, this means that the allocation of
the buffer based on the arrivahne.

39

Store Global memoryBlock size 512
180
160 =o—Expl
g 140 =@—Exp2
2 120 P
& 100 —he—EXp3
é 80 =>=Exp4
O 60
E
40 == EXp5
20 =®-EXp6
0 Exp7
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Exp8
WarplD

Figure25 Multiple experiments for one store to the global memory instruction

5.5. Conclusion

Experiments i mploemeerntedi mml efinmesnfteerdnit o quanti fy t
scheduler, the shared memory and the global memory. From the experimen¢asugedhe cyclesper

instruction for the arithmetimstruction with RaW dependency and without. In additiomveasuredhe

CPI for the shared memory and the global memory. The results are presdrabtbin

Table7 CPI of the differat type of instructions

Type CPI
Reg 6
Reg RawW 18
LDS 26
STS 30
LD.E [350-500
ST.E 34
Further mor e, time variation of the warp schedul e

instructions that have Radépendency with thread block size of 512 thremas analyzedWe show that
based on the analysis that we have done in GRGiIRLthe source of this variation is related with a non
constant stall of the warps that change the scheduling order. Thiss s&lised bythe unavailability of
the execution units or the operacallector.

Moreover, we show that the scratchpad meni@gtime predictable behavior when the bank cotdlic

can be determined. In contraite execution time to access the global ngmaries for store and load
instructions For load instruction the execution time varieamong differentexecutios. From the
experiments of store instruction we conclude that there is a write buffer. When the write buffer is full the
execution time of th store instruction increases and varies from warp to warp.

40

6. Timing model

In this section the model for the scheduling of the instructions is presdiedimingmodel takes as

input assembly instructiorBased on how the instructions are scheduled and the measured latency of the
instructionsprovides an estimation for the execution tirtrétially the timing model is presented and
some examples for two simple microbenchmarks are given to explain théimaute detail. Next, the
formulas that describe the model are givEemally, the scalability of the model in terms of number of
warps is discussed.

6.1. Instruction scheduling timing model for a single warp

From the observations in Section 5 we define types of dependencies between instructions. First, there

is an instruction dependency. An instruction from the same warp can be scheduled after 6 cycles.
Secondly, there is a data dependency. For one warp, an instruction with a data dependency can be
scheluled 6+12 = 18 cycles later.

The execution is in pipeline fashion so the warps can be scheduled every 2 cycles. So we assume that the
pipeline stages are separated in two parts. We are going to follow the terminology of the -GiRGPU
microarchitecturg¢3] (Figurel0).

First there is the ASIFAgdre26 whera the deachd ¢ead,(dgaoding of par t
instructions and the operations on the scoreboard are performed. Next there is the SIMD Datapath (yellow
part) where the operands are read and the ackeauton of the instruction is performed. The next
instruction from the same warp can be scheduled after 6 cycles, as the SIMT front 6 cycles latency
(Figure26).

SIMT SIMD
Front End Datapath
— 6 } 12 |

Figure26 Aock cycles of the SIMT
front end and the SIMD datapath

If there is an instruction dependency, the next instruction has to wait unpitati@us instruction finish

the SIMT front end before it starFigure 27 upper part). We assume that there is no mechanism, like
bypassing, that camt the instruction to start before the finalization of the previous instruction. Similarly
for the data dependency, the next instruction has to wait until the previous instruction has fiigared (
27 lower part).

I 6 —
Instruction Dependency | |

Data Dependency | | —6— 12 —

Figure27 Instruction and data dependencies for one warp

41

When we have multiple warps the warps are scheduled by the two schedulers (odd and even). An example
of the execution of multiple warps for the even scheduler is presentemyure 28. Since they are
instructions from different warps, there is no dependency among each other so they can be scheduled
every two cycles according to [1].

HH
WID =0	
WID =2	
WID=4	

Figure28 Execution for multiple warp®f even scheduler. WII
denotes the warp ID of every warp

Execution of two S2R R4, R Clocklo; 9 18 % w2
. SHL.W R4, R, Ox1; ! !
!ndepen.dent add |ADDR10, R11. R12: I : clock cycles
instructions. IADD R13, R14, R15; | ,
S2RR5, SR_ClockLo; I -
SHL.W R5. RB. OxL:
T 1]
0 18 66
Executions of two S2R R4, SR ClockLo; | | |
add instructions SHLWRA, R, Ocl, l !
: IADD R1Q, R11, R12; I | :
with Raw IADD R13, R10, R15; | \
P SHL.W RS, RB, OxL;

Figure29 The code and the timeline for thewo micro benchmarks. On the upper part the add instruction are independe
On the lower part theinstructions havea RaW dependency.

At the upper part oFigure 29 the timeline for the microbenchmark with the independent instructions is

presented. Initially the fAS2RO0 instruction is ex
AS2RO0 ittcamestl&8tth a@&aycl e. The AADDO instruction
instruction can start at cycle 24. Similarly, the

at cycle 30 and 36. Again, t he wditS8ntll54h chcle befor it Ra W d e
can start.

To compare the results from the experimentBigure 16 and the timeline ifFigure 29, it is required to

subtract the values of clocks. We have to wait until the pipeline stage, where the value of the clock is
ready. We assume that the correctvalueéfe c¢cl ock i s ready when the AS2
we can read the speci al register which has the va
This assumption is not strict, since we could assume that the value of the cloclyidegare the

completion of the instruction, but the result would be the same. It only matters to follow the same
assumption for all the cases. Consequently, for t
without dependency is 5418 = 36 cygles, which fits with the results from the experiments.

42

Similarly we have the execution for the case with the RaW dependeigtyd29 lower part).Initially,

the AS2R0 i s executed and the ASHLO has to wait
The AADDO instruction can start 6 cycles | ater. T
when the first AARDO AiSS2 Rfoi rhiassh endo adte pceyncdleen c4y wi t h
cycles | ater. The AS2RO0 and the ASHLO have RaW d
before. Finally, for the example with the execut.i
661 18 = 48 cycles, which is the same with the results from the experiméfitgine 16.

6.2. Formulas of the timing model .

In this section the formulakat are used for the calculation of the execution time are described. We use
the well known formula for the execution time & 6 0 Q) . We assume that during the execution of

the kernel the clock frequency remains constant. T is the execution time in clock (§CJe<PI is

cycles per instruction and N the number of instruction. For this model we have used three types of
instructions Arithmetic, shared memory and global memory instructions, so the formula expands to:

66 066 00 06 p

The execution time adrithmeticinstructions is described in equations 2 to 4. Since the execution time fo
arithmeticinstructions with and without RawW dependency is different we have to distinguish them. The
total execution time for tharithmetic instructions is the sum of the execution of independent and
dependent instructions (equation 2).

%%

00 00 00 C
00 6 0O z) o
00 6 0O z T

The execution time of the shared memory instructions is the sum of the execution time of loads and stores
to the shared memory (equation 5). Similarly with ahighmeticinstructions, the execution time of loads
and stores to the shared memory are giweedwations 6 and 7.

66 66 66 v
66 680 20 ¢
66 650 2§ X

For the global memory we describe the mematgncy hiding. This behavior is described by equation 8.

It is the summation of all instruction between the load request and the use of the data. This is the amount
of time where next instructions can be executed in order to hide the memory latertoy. néxt
instruction from load is the instruction that uses the data, (RaW dependency with the next instruction) no
memory hiding can be achieved. Please note that, we refer to a different memory hiding that is achieved
when different warps are executedihis case, the warp continues the execution until the data are read.

43

0 0 i QOFM GO0 TREWE it & WNQE | 01 6 o QE ¢ i

Similarly with the calculation for the previous types of instructions, the execution time of the global
memory instructions is calculated. As mentioned before, the store to the global memory is performed to a
write buffer. So the execution time for store is much smallerpaoed to the load to the global memory.
Furthermore, the equation for load to the global memory is extended by subtracting the memory hiding.

o

00 00 00 W
8 6 B0 2 o
66 6 0O z () z0 [l

6.3. Scalability of the model

Until now the model that it is described works for one warp. The scalability of the model is required to be
analyzed in more detaikigure 30 shows that the execution time remains the same until 6 warps. This
behavior derives from the restriction of the instruction dependency. For 6 warps, the warps are scheduled
one after the other and they fit to the 6 cycles of the SIMT front end. Sohthéuser until this point has

only one choice.

For multiple warps the scheduler can choose which warp to schedule. This choice is determined by the
scheduling algorithm. For instancekigure 31, for one warp (upper part) the scheduling algorithm does

not influence the execution time. On the contrary, for the case with 7 warps, the scheduler can choose
between warp 0 and warp 6. Since the schedulingritthgn is round robin, then the warp 6 will be
scheduled.

ADD- Block size 128288

o m128

2 40 :
3 30 - . F P mle0
g 20 - 3 B F 1 w192
© 10 - 8T w2

0 |

o 1 2 3 4 5 6 7 8 | 256
288

WarpID |

Figure30 Execution time of one add instruction for different number of warps. The execution time remains the same until
the size of the 6 warps

To test the scalabilitin terms of number of warps of the model, the model for multiple warps is tested.
First 3 warps are used for the two microbenchmarks that we used before. The model is compared with the
experiments.The model is tested for the case with 3 warps per sché&ttsierthe microbenchmark with

44

no dependency is usdeélgure33. The code in assembly and the trace of the code is shown. The timeline
of the execubn is presented in similar way that it was presented before.

First warp O, 2 and 4

ar e

schedul ed.
warps have to wait until the completion of their previous instruction. The pipelind isnfil the last
ASHLO where we have again

Si

nce

RaW dependency.

At

t her e

t hi

of the previous instructions. The execution times of all the warps are the same. However, since warp 2
and 4 start 2 and 4 clock cycleser respectively they finish also 2 and 4 clock cycles later. The timeline
exactly fits with the measurement that we get from the experiments. In a similar way the timeline is
constructed for the case with the RaW dependency. Again, the timelinetfithe/iexperiments.

(A) For 1 warp

Even Scheduler| WO.insrt0

Odd Scheduler Idle

(B) For 7 warps

Even Scheduleqy WoO.insrt0

Odd Scheduler| \w1.insrto

Idle Idle WO.insrtl
Idle Idle Idle
el
' W6.insrt0
|
W2.insrt0 W4.insrt0 | WO.insrtl
(IS —————
W3.insrt0 WS5.insrt0 WL.insrtl

Figure31 Execution for land 7 warp. For 7 warps the scheduler can choose which warp to schedule

45

S

Assembly code of the Trace of code for 3 warps per

microbenchmark a scheduler with RR scheduler
S2R R4, SR_ClockLo; WO S2R R4, SR_ClockLo;
SHL.W R4, R4, 0x1; w2 SZR\\ﬁi;ClockLo;
IADD R1Q_R11, R12; W4 S2R RM\SR, ClockLo;
IADD R13, R10, R15; WO SHL. \R4, Ox1;
S2R R5, SR_ClockLo; W2 SHL.W RA\R4, 0x1;
SHL.W R5, RS, Ox1,; W4 SHL.W R4, R4, 0x1;

WOIADD R10, R11, R12;
W2IADD RN, R11, R12;
, RL1, R12;

W4 1ADD R13, R10, R15;
WO S2R R5, SR_ClockLo;

W2 S2R R5,SR_ClockLo;
W4 S2R R3\SR, ClockLo;
WO SHL. \

.W R5)

, 0x1;
W2 SHL , 0x1;
W4 SHL.W R5, R5, 0x1;

Figure32 Execution of 3 warps, instructions with Raw dependency

Assembly code of the Trace of code for 3 warps per
microbenchmark scheduler with RR scheduler

S2R R4, SR_ClockLo; WO S2R R4, SR_ClockLo;
SHL.W R4, R4, 0x1, W2S2R SR_ClockLo;
IADD R10, R11, R12; W4 S2R RANSR\ ClockLo;
IADD R13, R14, R15; WO SHL. R4, 0x1;

S2R R5, SR_ClockLo; W2 SHL.W RA\R4, 0x1;
SHL.W R5. R5. 0x1: W4 SHL.W R4, R4, 0x1;

WOIADD R10, R11, R12;
W2 IADD R10, R11, R12;
W4 1ADD R10, R11, R12;
WO IADD R13, R14, R15;
W2 IADD R13, R14, R15;
W4 |ADD R13, R14, R15;
WO S2R R5, SR_ClockLo;

WO SHL.
W2 SHL.W RSy
W4 SHL.W R5, RS, 0x1;

Figure33 Execution of 3 warps, independent add instructions

46

6.4. Conclusion

A timing modelfor the warp schedulewvas presented. It is based on the observation of the experiments
that we performed at Section 5. Initially the model for a single warp was proposed. The instruction
dependency was introduced where the instructions from the same warps can be schegubedyeles.

The formulas for the execution time wegi@en based on the&ell knownequationfor the execution time

in clockcycles® 6 6 0 Q).

Finally, the model was tested for the scalability in terms of number of warps and was shown that the
model can be extended for 6 warps (3 warps per schedutbut any modificationFor higher number
of warps further study of the warp scheduler is required.

47

48

7. Benchmark: Convolution Separable

We use the measurements for the CPI Section 5 and the formalization of Section 6 to test the model for
the convolution separable benchmark from the CUDA SDK. Afterwards, the model is compared with the
model proposed by Hong and Ki&8].

7.1. Application of th e model

The convolution separable application from the CUDA SDK was used to test the accuracy of the model.
The 2D convolution application is split in two 1D convolutions, one for the rows and one for the columns.
The two parts of the algorithm are implented in two different kernels that are executed one after the
other. The kernels are using 32 threads, so only one warp is running on the GPU. We use only one warp
because from the experiments we have seen that the execution with one warp has tinablpredict
behavior. Based on the analysis that was performed at Section 6.3 thecanod®d tested also for 6
warpsThe distributions of the different types of instruction that are used from the two kernels are
presentedn Figure 34. Both kernels efficiently use the shared memory so most of the instructions are
arithmeticinstruction and shared memory instructions. For the rows kernel, only 1% of the instructions
have RaWdependencies while for columns kernel this is significantly higher, 22%.

Rows KerneDifferent type Columns KerneDifferent
of instructions type of instructions
gy 0% 1% m Arithm Dep 3%, 2% 5% = Arithm Dep
% m Arithm 8% M Arithm
m shm load m shm load
B shm store H shm store
m glm store m glm store
m glm load m glm load

Figure34 Percentage of Instruction types for the ronand Columnskernel

Table8 Instruction types for the rowskernel

Arithm Dep | Arithm | shmload | shmstore | glmstore | gimload | Total
1 78 40 9 9 8 145

Table9 Instruction types for the columns kernel

Arithm Dep | Arithm | shmload | shmstore | glmstore | gimload | Total
21 57 7 3 2 5 95

49

For the comparisonf the experiments and the model we use the best, average and worst case execution
time (BC, AC and WC). In order to determine the BC, AC and WC, WCET analysis tools are needed. To
our knowledge this type of tools are not available for GPUs and spdgificalthe Fermi architecture.

So, the BC, AC and WC are calculated by executing the same experiments multiple times.

For the BC of the model, the load to the global memory takes the minimum amount of time (64 cycles
which is the same as the store to Write buffer). For the worst case of the model the load takes the
maximum value because we assume that no memory hiding can be:applied L

Table 10 and Table 11 show the error of the model and the experiments of the rows and thensolum
kernel. The best, average and worst case execution time for the experiments and the model are compared.
First for rows, it can be seen that the average case has an error of 2% although for best case is
underestimated ky15% and for worst case 38% isapgstimated. The results show that, the average case

can be predicted precisely although the best case and the average case are too optimistic and pessimistic
respectively. The reason is that we do not perform any detail analysis for the global menmssgsadtie

assume for the best case that all the memory accesses can hide the memory latency. Similarly for the
worst case we assume that none of the memory accesses can hide the memory latency.

Table10Error of the model and the Tablel1Error of the model and the

experiments for the rows kernel experiments for the columns kernel
BC AC wWC BC AC wWC

Exgeriment | 3365 | 3410 | 4004 Experiment | 3106 | 3127 | 3426

Model 2856 | 3510 | 5544 Model 1428 | 3228 | 3458
Error -15% | 2% | 38% Error S54% [3% | 1%

The error for the columns kernel is similar for the average case but the best and the worst case are
significantly different. The best case is considerably underestimated while the worst case is predicted
moreprecisely. This behavior can be explained by the fact that the best, average and worst case are close
together. In this case the compiler does not find enough instructions to put between the load to the global
memory instruction and the use of the datatht®@amemory latency cannot be hidden efficiently.

The range of the prediction is graphically presente&igure 35 to understand the results intuily.

From this figure it can be seen that the prediction range for both cases is approximately the same. In
addition, it can be noted that the different distribution of the execution times for the two kernels.
Furthermore, for the columns kernel due te limited distribution the BC, AC and WC are more close
together compared to the rows kernel.

50

BC, AC WC

Rows kernel | Experiment
|:| Prediction range
BC. AC wc
Predicted value for the
Columns kernel average case

_.>
Time

Figure351t is presented the best, average and worst case of the experiments and prediction range of the model. T
prediction of the average case is shown with a presented line.

7.2. Comparison

Furthermore, the model proposed in [28] is compared with this model. For simplicity we are going to call
it AMWP model 6 (memory warp parallelization), der
paper the Tesla architecture is modeled. Althoulga model is based on warp level parallelism for the
memory accesses and the computation, it does not make significant assumption about the architecture.
The model was implemented in Python and the parameters were tuned to match the Fermi architecture.
The parameters that were used for the two kernels are presefii@olérl2. The results are presented in
Table13 for the Rows and able 14 for the Columns kernel. Initially, it can be sedattfor the case of

the rows kernel the results are very similar. For columns kernel the difference between the MWP model
and the execution time is significant (18%). As we mentioned before this kernel has many RawW
dependencied~{gure34). The MWP model does not take into account the extra cost of the dependencies
which has as a result the underestimation of the computation part of the kernel.

51

Table12 Values for the parameters of the MWP model

Parametrs RowsKernel | GolumnsKernel
#Threads_per_warp 32 32
#lssue_cycles 2 2
Clock Frequency (GHz) 607 607
Mem_Bandwidth 133.9 GB/s 133.9 GB/s
Mem_LD 400 470
Departure_del_uncoal 10 10
Departure_del_coal 4 4
#Threads_per_block 32 32
#Blocks 1
#Active_SMs
#Active_blocks_per_SM 1
#Active_warps_per_SM
#Total_insts 146 95
#Comp_insts 138 90
#Mem_insts 8 5
#Uncoal_Mem_insts 0 0
#Coal_Mem_insts 8 5
#Synch_insts 1 1
#Coal_per_mw 1 1
#Uncoal_per_mw 32 32
Load_bytes per_warp (Bytes 4*32 4*32

Table13 Rowscomparisons
of the models

Table14 Columns Comparison
of the models

RowsKernel| AC Columns kernel AC

Experiments | 3410 Experiments 3127
Model 3510 Model 3228
MWP model| 3492 MWP Model 2540
Model Error | 2% Model Error 3%

MWP error 2% MWP error -18%

7.3. Effect of the memory latency on the models

Figure 36 andFigure 37 showhow the latency of load to the global memory influences the two models.
For both cases with linear increase of the memory latency the execution time increases linearly. This is
expected since in the formulas the global memory latency is part of the tiosdnination for the
calculation of the execution time. Note that, this is the average value of the global memory latency since it

52

can change from access to access. In addition, MWP model seems to be more sensitive to changes of the
latency since it has ¢iher slop for both kernels.

Rows Kernet Comparison of the correlations of the
two models for different global memory latencies

30%
20%
« 10%
o
W om
390 400 410 420 430 440 450 460 470 480 490 500
-10% -
Global memory latency
-20%

=¢=NModel =li=MWP model

Figure36 Rows kernek, Error of the two models for different values of the global memory latency

Columns kernel Camparison of the error of the two
models for different global memory latencies

10%

0%

420 430 440 450 460 470 480 490 500

10% 350 360 370

-20% Global memory latency

Error

-30%

-40% -

-50%
==f==Model ==ll=MWP model

Figure37 Columns kernet Error of the two models for different valuesf the global memory latency

7.4. Analysis of the benchmark for time variation

Until now, the average case of the execution time was discussed. Now we analyze in more detail the
distribution of the different execution timdsigure 38 shows the distribution of 200 experiments for the
execution times for the Rows kernel. The horizontal axis show the different execution romes f
experiment to experiment and on the vertical axis is shown the number of experiments. The bars show the

53

number of experiments that have the same execution time and the experiment accumulation is presented
with the red line. The dash lines present therage case the execution time calculated with our model.

We notice that the calculation from the model can give an upper bound for 96.5% of the experiments with
2% error from the AC. The rest 3.5% of experiments is the one that determines the WCEKesodhe

has to be analyzed in more detail.

Rows Kernel 200experiments
AC Model
25 i] 250
9 I I
gzo | ! ! S 200
£ 15 ! ,/ ! 150
= 1 1
8 10 | 1 100
> I 1
d . el HTIT |
5 . 50
O_MIIIII I I 1 IIIIlllll:lllllllllllllllll O
<t O N O O < 00 < 00 N © O < 0 O O 0 O N < <« oo o
O O I~ I 00 00 0 OO OO O O H 1 —«J N < IO IO I~ O NN O N O
M M M MO MO MO MO OO M & 7§ & & ¥ 9 S S5 S S 0w owm s O
M M M MO M M M M MO MO MO MO MO O MO MO MO OO O O O 0o oo
Execution time
B HEXp = Accu

Figure38 Distribution of execution time part of Rows kernel

We split the kernel in three parts: (1) load from the global memory, (2) computation and (3) store to the
global memory.showthe distribution of the instructions of the three parts anthinle 15, Table 16 and
Tablel17the instructions in absolute values can be found.

If we sum all the instructions from the different paftalfle 15, Table16 andTablel7) it will not be the

same with total number instruction of the kerndlaple 8) due to overhead of the instructions. More
precisely there are 4 (2 for starting time and 2 for finishing time) extra instructions of Load part since the
instruction are placed all together from the compiler. In addition 4 instructions multiply by 8
measuremestfor the computation part (32). Similarly with the computation part we have 32 instructions.
Furthermore, the values for the measurements have to be store to the memory, so we have to calculate
also the store instructions. However, the compiler reortiergstructions and it can be inside or outside

the measured part.

The load part loads the data that initial are in the global memory to the shared memory to minimize the
memory access cost of the future memory access. There is also a store to thexghatygl instruction

(ST.E) in this part. This instruction stores the starting time of the measurement. The compiler performs
instruction reordering to minimize the RaW dependencies, so it was not possible to exclude these
instruction from this part. Nextithe computation part the data are read from the shared memory and the
actual computation is performed. Finally, in the store part the data are stored to global memory.

54

Load Global memory

m Arithm Dep
2% m Arithm

m glm load
H glm store

m shm store

Figure39 Percentage of instructions for load part

Computation

m Arithm Dep
m Arithm

m shm load

Store Gobal memory

m Arithm Dep
m Arithm

m glm store

Figure41 Percentage of instructions for store part

Tablel15Instructions for load part

Arithm Dep | Arithm | glm load | gIm store | shm store| Total
4 26 10 1 10 51

Tablel6 Instructions for computation part

Arithm Dep | Arithm | shm store| Total

24 48 40 112

Tablel7 Instructions for store part

Arithm Dep | Arithm | gIm store | Total

21 16 8 45

55

Figure40 Percentage of instructions for percentage part

We execute different parts of the kernel 500 times in order to define the variation of the execution times.
The results are presentedRigure42, Figure43 andFigure44 for the load, computation and store part
respectively. All parts have variation in the execution times from execution to execution.

First we present the results for the load part. There are 5 main cateaieution times. The biggest
difference of the main categories is 10 clock cycles. We have shown in sectiguie @4) that the
execution time ofoad instructions to the global memory has variation from execution to execution, so
this difference is expected. Furthermore, we see that the difference of the best case and the worst case is
324 clock cycles.

Rows Kernel Load from Global Memory 500
experiments

140 600
£ 120 500
g 100 400
S 28 300
2 40 200 me— #EXp
* 90 100 ____ Acc
0 0
™
Oy
N

Execution time

Figure42 Distribution of execution time for the load part of rows kernel

Rows Kernel Computation

300 Sk 600
250 500

o)

S 200 183 400

£

S 150 - 300

< — HEX

@ 100 49 200 P
50 - 100 ACC

1 1 2 1.2 1 2 1 1
0 - 0

© P O >E@S D> @G A
S S SRS S U R
R RT QT T QTRQT QTRRT DT AT AR

Execution time

Figure43 Distribution of execution time for the computation part of rows kernel

56

The results for the computation part are presentefigare 43. We see that the execution times are
distributed in 3 main categories. The largest difference in these categories is 4 clock cycles. Havever, w
note that the difference between the best case and worst case is 328 clock cycles. We relate this difference
with the variation that we found for the execution of raad instruction with RawW dependendyiqure

20). In this case we have difference 23% compared to the average execution of the different warps for 6%
of the experiments. The main difference with the problefkigidire20is that we use 16 warps while here

we use only one.

Rows Kernel Store to global memory
600 500

cop 1389 _— | 498

g - - 496
GE) o / - 494
S 300 - 492 ,
o [#exp
a5 200 - - 490
* - 488 ——AcC
100 -
2 1 1 1 1 1 1 1 1 [486
0 - 484

616 618 632 634 636 640 650 786 794 916
Execution time

Figure44 distribution of execution time for the store part ofows kernel

The results for the store part are presenteBigure 44 that 98% of the experiments have the same
execution time, 616 clock cycles. Wete also that the average case is the same with the best case. This
behavior shows that the write buffer is used efficiently. The worst case is 300 clock cycles slower
compare to the average case (48%) which is significant big compared to the loaé anchphutation

part. This difference is consistent with the experiment that we had in section 5 for the store instruction to
the global memory, where again for store instruction we had the biggest difference. For one store
instruction the variation was 10flock cycles. So if 3 more stores out of 8 can use the write buffer
efficiently would lead to the 300 clock cycles different that we have for this case.

7.5. Model scalability in terms of warps

The model is analyzed for its scalability in terms of the nuroberarps it can support. We maintain the
same model as in section 6.3. Our hypothesis is that the execution time would remain the same until it
reaches a thread block size of 6 warps and afterwards execution time will increase. The time behavior for
a thread block size larger than 6 warps requires further research.

Figure 45 presents the results of the experiments for a different number of warps anddékfor the
execution time. The horizontal axis shows the number of warps used by the kernel. The vertical axis

shows the execution time in clock cycles. Initially, for a thread block size of up to 2 warps the execution

57

time remains almost the same (186rease for 2 warps) for the BC, AC and WC. Next, for 2 to 4 warps

the execution time decreases by 5% for the BC and WC. This behavior was unexpected, however the
execution time of WC remains almost the same (1.5% increase). It is assumed that timeeliffereeen

the WC and BC and AC is due to the variation in global memory access. A more detailed analysis is
required to determine this problem. Finally, for more than 6 warps the execution time increases as
expected.

Rows kernel Scalability of the model
5000
o, 4000 +——;
8 l—l=lz'¢'
o
& 3000 —BC
4
5 2000 =i—AC
O
1000 we
emZes \0Odel
0
1 2 4 6 8
#warps

Figure45 Scalability of the model in terms of number of wargsr Rows kernel

7.6. Conclusion

The timingmodel was tested with the convolution separalenfCUDA SDK. The experiments show
that for the configuration with a single wathe execution can be predicted with 2% and 3% error for
rows and kerneltor the average casEor the BC and WC the errori$5% and 38% for rows kernel and
-54% and 1% for the columns kernkel.other words the model can provide an upper bound fof®65
the experiments with 2% and 3% error.

In addition, the model was compared with Hong and Kim ma&#jl [The two modelsatch for the rows
kernel but for the Columns kernel the MWP model 1i#86 error. This difference is causidm the fact
that their model does not takato account the extra cost &aW dependencies. The two modale
compared for different global memory latency valuésr both models the execution time increased
linearly with the linear increase of the memory latenEinally the scalability of the model was
investigated and the maddeas tested for 1, 2, 46 and 8warps.The results show that the modsl
scalable up t® warps(192 threadsas was expecte#for morethan 6 warps$urtherstudy is required

58

8. Variable rate warp scheduling

As described previously, the Fermi warp scheduler uses the Loose Round Robin algorithm. Warps are
scheduled, based to their warp ID. A warp with a smaller ID will be scheduled before a warp with a
higher warp ID. When there is a load t®lghl memory, the scheduler dynamically will find the next
available warp to schedule. The scheduler is fair for all the warps so the warps reach long instruction at
close points in time. To improve the time predictability of the system it is requiretiedide the warps

in a more controlled way. It is easier to analyze its behavior of the GPU if the warps have constant
scheduling frequency.

Initially, it is described the motivation to use the variatalee warp scheduler antle problemsthat the
algorithm solvesare presentedrinally, experimental evidence is given to verify the correctness of the
algorithm.

8.1. Motivation for the variable rate warp scheduler

Without any restriction to the warp scheduler we cannot always determine which warp is gbég to
scheduled next. If we set a fixed scheduling rate for all the warps then it is easier to determine the
execution time [16].

Load Load

Instruction
Addr

Memory
Latency .1 Computation |

L) »”l

v

Clock Cycles

=== A warp with hiaher schedulina rate

The rest of the warps

All warps have the same rate

Figure 46 Typical execution in GPU of the warps is presented with the blue line. All the warp:
scheduled with the same rate (RR) so the executtones of all warps arepresented the blue line. W
compare the typical execution with the where the same number whrps is used but one warp
scheduler faster (orange line). The rest of the warps are scheduled in RR fashion.

A typical execution of a program on a GPU is presented with a blue liFigune 46. On the horizontal
axis the time in clock cycles is presented and on the vertical axis the instruction address. The figure above

59

shows how the program advances during its execution. If all the warpshe@uled with the same rate,
then the scheduling algorithm is RR and all the warps have same execution time. So in this diagram with
a round robin algorithm all the warps would be on top of each other so it reduces to one line.

From the diagram it can be seen that there are two types of execution. First we have the memory part. The
program has to wait for the memory to get the data; since the program is not advancing the line is
horizontal. Afterwards, it starts the computaticartp For simplicity, it is assumed that the instruction
address increases linearly with time, which means that all the instructions have the same execution time.

Since with this algorithm we restrict the options of the scheduler we expect to have tiegrada
performance. By using the variable rate algorithm the performance of the system can be improved by
setting one warp to be scheduled more frequently compared to the other warps. In this way the long
instruction and for this case the load from thabgl memory is reached in different points in time. The
warp that it is scheduled more frequently reaches the memory instruction earlier. Since warps with close
warp IDs have spatial locality, the fast warp will bring also the data for the other warpdkiby t
advantage of the spatial locality of the data. In this way the latency can be hidden more efficiently.
Graphically, this behavior is presentedrigure46 . We have same number of warps as we have in the
case with the blue line but the orange line is one warp that it is scheduled more frequently and the purple
line is the rest of warps that are scheduled with the same frequency.

The warp thats scheduled more frequently it is executed faster. Thus the computation part has a bigger
slop compared to initial execution (blue line). The memory part remains the same since the memory
latency does not depend on the scheduling frequency.

The rest ofthe warps (purple line) are scheduled less frequently compared to the initial case (blue line).
The warps are scheduled only in the slots where the fast warp is not scheduled. Consequently, the slope of
the purple line is smaller compared to the initiabecaHowever, when the fast warp reaches the load
instruction has to wait for the results. So it is not scheduled and the rest of the warps can use all the slots.
The slope of the purple line increases and it becomes bigger compared to the blue oneasingarfes

have to be scheduled.

With this scheduling scheme the performance of the GPU can be improved since the fast warp can reach

the load to global memory instruction earlier, while the other warps are still working on previous
instructions.

8.2. Impleme ntation and Results
We have made an implementation in GPGHbh. The implementation has been performed in the same
way as the other schedulers in GRSith are implemented. The scheduler algorithm can be chosen from

the configuration file.

Figure 47 shows an example execution for the even scheduler. The behavior of the odd scheduler is
identical. For this example we configure the GRS with perfect memories in order to make more

60

clear the execution of the different warps. The time is presented on the horizontal axis. The vertical axis

shows the instruction address. We execute arithmeticinstructions in this example. WO is sche=tll
once rate = 2 (e. g. WO W2 WO W4é). The
finish faster the execution of the kernel. The rest of the warps are executed in round robin fashion.

hi gher

Variable rate scheduling WO is scheduled with R=2
Perfect Mem Even warps

256
_ 192
o
©
< 128
13
£
64
0
0 100 200 300 400 500
Clock Cycles

& W0
mwW2
AWA4
X' W6
XW8
o W10
W12

Figure47 Example executin with perfect memoriesfor variable rate scheduler.

The execution was tested with a microbenchmark that is usingaatiiyneticinstructions and we enable
the memories in contrast with the previous example. The results are presdfirdded8 andFigure49

for the even and the odd scheduler. From the two graphs we see that there is a memory latency every 16

instruction. Since we do not perform any accesses to the global memory, instructienntashs

introduce the memory latency. In real hardware we did not notice so many cache misses.

61

r

a i

Variable rate scheduling WO is scheduled with rate =
Even warps
512
448 * W0
384 BW2
B 320
2 AW4
< 256
8 10 X W6
128 XW8
64 ®oW10
0 + W12
0 500 1000 1500 2000 2500
Clock Cycles -Wi4
Figure48 Even scheduler, the warps are executed with variable rate scheduling.
Variable rate scheduling W1 is scheduled wiht rate = :
Odd Warps
512 1888, 512
448 oW1
384 mW3
§ 320 AW5
= 256 W7
299 %
128 KXW9
64 oW1l
0 +W13
0 500 1000 1500 2000 2500
=W15
Clock Cycles

Figure49 Even scheduler, the warps are executed with variable rate scheduling.

The results are compared with the available schedulers in GEBRI'able 18). The round robin (RR
scheduler), the greedy then oldest (GTO) scheduler where the warps executed in round robin fashion but
when a warp blocks (i.e. gl obal memory access)
scheduler [21]. The twevel scheduler is a two level hierarchical round robin scheduling.

8.3.

Dynamic scheduling of the warps can influence the time predictability of the GPU. Different scheduling

Table18 Comparison othe variable rate scheduler to the different schedulers from GPGln.

Scheduler IPC
LRR 14.6
Two Level 134
GTO 15.7
Variable rate 155

Conclusion

decisiors at run time can lead to different execution tim&® show that theariableratewarp scheduler

can be used to improve tinpeedidability, by assigning the warps to fixed slots. In addition, initial results

show thatwhen a warp is assigned to a higher schedulingtihaie the other warpshe performancecan

be improvediue to the intewarp spatial localityf the data

9.

Conclusions and future work

First a summary of the findings is presented in subsectiorS8ction 9.2 presents the future work and
some optios about how to use the timimgodel and the variable rate schedulenally, section 9.3

con

cludes the report.

9.1. Summary

Nowadays GPUs gain popularity among the general purpose parallel architectures. Programming models

like CUDA and OpenCL are used for GPGPU programming in order to accelerate general purpose
applications. The timing behavior of the Fermi GPU dethure was examined through latency analysis.
Microbenchmarks implemented in assembly that expose the timing information of the architecture were

used The experimentarecompared with the GPGRS8im cycle level simulatoiThe main contributions
of this project are:

1 We found that the warp scheduler has different time behavior for 4% of the experiments for

1

mi crobenchmark with one

i MADOo

and

one

iAADDO

possible reasons for this behavior are the unavailabilitheoEkecution units or the register file bank

conflicts.

The scratchpad memory was analyzedwa@pprovedhat it has time predictable behavior when the

number of bank conflicts is known. In addition, the variation of the execution time of load to the

global memory was measured.

An Instruction dependency with cost of 6 cycles between the instructions shihe warp was
observed. The cost of the RaW (18 clock cycles) dependency was quantified. Consggadatind
the number of the pipeline stages &ithmeticinstructions.Furthermore, the latency the shared

63

ns:i

and global memory instructionsas measwd For the global memory we take into account the
memory hiding for one warp.

1 A timing model for the warp scheduler was introduced. The model was tested for Convolution
separable benchmark from CUDA SDK. The model was accurate for average case wittd 2% a
error for rows and columns kernel respectively. For the best case the modeb¥adnd-54% and
worst case 28% and 1% error for rows and columns kernel. Finally, we show that the model is strait
forward scalableip to6 warps.

1 Finally, the variake warp scheduler algorithm was proposed and implemented in GS@PUased
on the thread scheduler of FlexPret architecture [16]. The algorithm improves the time Ipiféglicta
of the system by schedulirthe warps in fixed slots. In addition, initial tés show that for the
configuration with one warp scheduledvith higher rate than the otlercan improve also
performance.

9.2. Future work

There is plenty of space to improve the Fermi GPU architecture in order to improve the time predictable
behavior Next we present some indications for the future work:

1 Implementationof a tool that usethe model It will take as input assembly code and produce
estimatiorfor the execution time.

1 The size of the writebuffer hasto be dérmined To achieve that wewould use
microbenchmarks fothe store instructionto the global memory.By gradually increasing the
number of warp, the size of the buffercould beshown In this way it would be possible to
estimatewhen the write buffer would be fudind as a result to predict more precisely the WCET
Consequently we would have ateetestimation for the WCERBy replacinghe equation 10 with
theequationl3.

Y QMO Wi Ao po
Furthermore, the model can be modified to include also the time variation loatthenstruction
to the global memoryMore precisely the equation 11 can be replaced by equation 14. The
function AfO represent s ftomexecutmntd exdcutiann of t he
Y QU O QéeE e z0 pT
1 The scalability of the model can leatendedFirst it is necessary tdefinethe behavior of the

warp scheduler for more than 6 warg@ased on the behavior of the warp scheduler the model
should be adaptedeordingly.

64

1 The model can be extended by using the level 1 cache model propo&dl iBy[using this
model we could predt more precisely thexecution time of thenemory accessedn addition, in
order toinclude the L2 cache memory in the analysis we would design thadt#in a different
way. It is very complex to analyze, gince itis shared between the SMs anadunified for data
and instructionsSomeinitial design decisions would be

0 The separation of thiastructionsand datd_2 cache memoriedt simplifies the analysis,
since the data and instructgxran beanalyzedndependently

o0 Random replacement ly. With random replacement policy we can analyze the
behavior of the cache with probabilistic methods.

1 The model can be extended in order to take into account the bank conflicts to the shared memory

% 6 0o z () I #0) T

©

x EADBOEIACT AIADATAE T Nil EROOOBA

ET 1

O

9 Design space exploration can be performed for the different scheduling rates of the warps to find
the optimal tradeoff between performance and time predictaliiitnally, the variablegate warp
scheduler can be modified GPGPUSim in order to be ableotchange the scheduling rates of
the warps at run time. In this way the warp scheduler can have a more adaptive behavior.
Thereforethe scheduler would be able to schedule warps with mixed criticality.

9.3. Conclusion

The Fermi GPU architecture was analyze get a better insight of its time behavibhe characteristics
of the GPU architecturareadvantageou®r the time predictability.

The SIMT model provides hiarchy of thehreadghat are executed in paralldhus,the resources of the
system are assigned in a hierarchical way and can be analyzedleasidition,Fermi uses anfigurable
scratchpad cache memories. The scratchpad meniwppntrolledby softwareandso, it can be used for
time predictablanemoryaccessesFurthermore, lie control flow mechanism does not use speculation
mechanisma (e.g. branch predictionyhich would make the analysis much more complicaied to the
instruction dependency, the warp scheduler has time predictable behaviortéo6 yparps.The main
source of variation wasaused byhe out-of-chip global memory. There are known solutighat improve

the time predictability of the owdf-chip memory accessesinally, nowadays GPGPUs sedmbe ahot
research topic and so changes and improvements in hardware architectbet improve time
predictabilitycan be adoptechore easily

In conclusionthe Fermi GPU architecturis suitable for reatime applications with soft deadlineghe

initial resultsshow that with few changesin the hardware architecturé, can have time predictable
behaviorand so it can be suitable firal time applicationwith morestricttiming constrains

65

66

67

References
[1] Leischner, Nikolaj, Vitaly Osipov, and Peter Sanders. "Famnchitecture white paper.” (2009).

[2] Wong, Henry, MM. Papadopoulou, Maryam Sadoogtivandi, and Andreas Moshovos.
"Demystifying GPU microarchitecture through microbenchmarkingPdrformance Analysis of Systems
& Software (ISPASS), 2010 IEHERernational Symposium opp. 235246. IEEE, 2010.

[3] Bakhoda, Ali, George L. Yuan, Wilson WL Fung, Henry Wong, and Tor M. Aamodt. "Analyzing
CUDA workloads using a detailed GPU simulator.Pémformance Analysis of Systems and Software,
2009. ISPASS®9. IEEE International Symposium,qp. 163174. IEEE, 2009.

[4] http://www.gpgpusim.org/

[5] Lai, Junjie, and André Seznec. "Performance upper bound analysis and optimization of sgemm on
fermi and kepler gpus." IB@ode Generation and Optimizatiq€GO), 2013 IEEE/ACM International
Symposium qrpp. 310. IEEE, 2013.

[6] NVIDIA, Nvidias next generation cuda compute architecture: Kepler gk110, Whitepaper, NVIDIA
Corp., 2012.

[7] Wilhelm, Reinhard, Jakob Engblom, Andreas Ermedahl, Niklas Holstiphah Thesing, David
Whalley, Guillem Bernat et al. "The worsase executictime problend overview of methods and
survey of tools."ACM Transactions on Embedded Computing Systems (TE@S8) 3 (2008): 36

[8] Butazzo, Giorgio C. "Hard redime computig systems.Predictable scheduling algorithms and
applications(3 edition).

[9] Thiele, Lothar, and Reinhard Wilhelm. "Design for timing predictabiliBeatTime System23, no.
2-3 (2004): 157177

[10] Kirner, Raimund, and Peter Puschrdiime-predictable computing." Boftware Technologies for
Embedded and Ubiquitous Systepys. 2334. Springer Berlin Heidelberg, 2011.

[11] Grund, Daniel, Jan Reineke, and Reinhard Wilhelm. "A Template for Predictability Definitions with
Supporting Evidace." INPPES pp. 2231. 2011.

[12] Zhang, Wei, and Yigiang Ding. "Standard deviation of CPI: A new metric to evaluate architectural
time predictability." InApplicationSpecific Systems, Architectures and Processors (ASAP), 2013 IEEE
24th InternationalConference orpp. 111112. IEEE, 2013.

[13] Schoeberl, Martin. "Is time predictability quantifiable?."Hmbedded Computer Systems (SAMOS),
2012 International Conference popp. 333338. IEEE, 2012.

68

[14] Lickly, Ben, Isaac Liu, Sungjun Kim, Hiren D. teg Stephen A. Edwards, and Edward A. Lee.
"Predictable programming on a precision timed architecturePraceedings of the 2008 international
conference on Compilers, architectures and synthesis for embedded spgtel3¥146. ACM, 2008.

[15] Schoderl, Martin. "Timepredictable computer architectur&URASIP Journal on Embedded
System2009 (2009): 2.

[16] Zimmer, Michael, David Broman, Christopher Shaver, and Edward A. Lee. "FIexPRET: A Processor
Platform for MixedCriticality Systems." InProceedings of the 20th IEEE Re@ime and Embedded
Technology and Application Symposium (RTAS). |EBE4.

[17] Prakash, Aayush, and Hiren D. Patel. "An instruction scratchpad memory allocation for the precision
timed architecture.” IProceedings of the Céerence on Design, Automation and Test in Eurqyue
659-664. EDA Consortium, 2012.

[18] Burns, Alan, and David Griffin. "Predictability as an emergent behaviouRtbert |I. Davis and
Linh TX Phan, editeurs, 4th Workshop on Compositional Theory Taewhnology for Realime
Embedded Systenmp. 2729. 2011.

[19] Heckmann, Reinhold, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. "The influence of
processor architecture on the design and the results of WCET feaséedings of the IEE®L, no. 7
(2003): 10381054.

[20] Reineke, Jan, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. "Timing predictability of cache
replacement policiesReal Time System37, no. 2 (2007): 9922.

[21] Narasiman, Veynu, Michael Shebanow, Chang Joo LestaRuMiftakhutdinov, Onur Mutlu, and
Yale N. Patt. "Improving GPU performance via large warps and-léwal warp scheduling.”
In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitegpurd08
317. ACM, 2011.

[22] Jog, Adwait Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar lyer,
and Chita R. Das. "Orchestrated scheduling and prefetching for gpgpuadckedings of the 40th
Annual International Symposium on Computer Architegtpope 332343. ACM,2013.

[23] Schoeberl, Martindlop: A java optimized processor for embedded -tiead systemsVDM
Publishing, 2008.

[24] Betts, Adam, and Alastair Donaldson. "Estimating the WCET of @&d¢¢lerated applications using
hybrid analysis.'RealTime System&CRTS), 2013 25th Euromicro Conferencel&kE, 2013.

[25] Wegener, Joachim, and Frank Mueller. "A comparison of static analysis and evolutionary testing for
the verification of timing constraintsReal Time System&1.3 (2001): 2468.

69

[26] Hirvisalo, Vesa. "On Static Timing Analysis of GPU Kernel&4th International Workshop on
WorstCase Execution Time Analysigd. Heiko Falk. Vol. 39. Schloss Dagstubéibniz-Zentrum fuer
Informatik}, 2014.

[27] Chattopadhyay, Sudipta, Lee Kee Chong, AbhikdRoudhury, Timon Kelter, Peter Marwedel, and
Heiko Falk. "A unified WCET analysis framework for multicore platforrdsCM Transactions on
Embedded Computing Systems (TEGCSno. 4s (2014): 124.

[28] Hong, Sunpyo, and Hyesoon Kim. "An analytical mddela GPU architecture with memalgvel
and threadevel parallelism awarenesACM SIGARCH Computer Architecture New®l. 37. No. 3.
ACM, 2009.

[29] Mushtaqg, Hamid, Zaid AArs, and Koen Bertels. "Accurate and efficient identification of woaste
execution time for multicore processors: A surviyT. 2013.

[30] van den Braak, Geftan, Juan Gomedauna, Henk Corporaal, Jose Maria Gonzdlemres, and
Nicolas Guil. "Simulation and architecture improvements of atomic operations on GPU scratchpad
memory." In Computer Design (ICCD), 2013 IEEE 31st International Conferencem@ri357362. IEEE,

2013.

[31] Lundqvist, Thomas, and Per Stenstrom. "Timing anomalies in dynamically scheduled
microprocessorsRealTime Systems Symposium, 1999. Proceediigs20th IEEEIEEE, 1999.

[32] Wilhelm, Reinhard, et al. "Memory hierarchies, pipelines, and buses for future architectures in time
critical embedded system&CbmputerAided Design of Integrated Circuits and Systems, IEEE
Transactions 0128.7 (2009)966-978.

[33] Akesson, Benny, Kees Goossens, and Markus Ringhofer. "Predator: a predictable SDRAM memory
controller."Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign
and system synthesSCM, 2007.

[34] http://docs.nvidia.com/cuda/cudaprogrammingguide/#axzz3FlqOpVOb

[35] Patterson, David. "The top 10 innovations in the new NVIDIA Fermi architecture, and the top 3 next
challenges.NVIDIA Whitepape(2009).

[36] https://code.google.com/p/asfermi/
[37] Nugteren, Cedric, Gerlan van den Braak, Henk Corporaal, and Henri Bal. "A Detailed GPU Cache
Model Based on Reuse Distance Theory.HRCA-20: International Symposium on High Performance

Computer Architecture. IEER2014.

[38] Hennessy, John L., and David RattersonComputer architecture: a quantitative approach
Elsevier, 2012.

70

71

72

Appendix A: Detailed experiments

For completeness the experiments that were performed to identify and quantify the sources of timing
variation are presented. The experimentssented in this section have the expected behavior. The
experiments that expose the time variation are presented in section 5. First, the experiments for the
arithmeticinstructions are shown. Next the experiments for the shared memory are shown. Afterward
the global memory is analyzed. Finally, the experiments for the different warp schedulers in-SPGPU

are shown.

A.1. Arithmetic

instruction

For the arithmeticinstructions the operations: addition (ADD), multiplication (MUL), cosine (COS),
multiplication-addition (mad) were used. [fable 19 the execution time of the mictwenchmarks is
presented for different number of operations with no dependernt@se 19 shows that all the
instructions consume the same amount of time. This means that the latency of the instruction is modified

to fit with the slowest one. This behavior favors throughput and makes the pipeline easpdetaant.

In addition, for the first instruction the execution time is measured as 30 clock cycles because we have to
take into account also the cost of the measurement (one shift operation in this case). However, a 6 clock
cycles delay is required for deding and the scheduling steps that are necessary for every instruction. So,

every 6 cycles a new instruction start.

Table19 Execution time ofarithmetic Instructions in clock cyclesNo dependencies

#OP ADD MUL COS MAD
1 30 30 30 30
2 36 36 36 36
3 42 42 42 42
4 48 48 48 48
5 54 54 54 54

Similarly, in Table 20 are the results from the experiment where all the instructions have a Raw

dependency. The first line is the same as in the previous experiments since it is only one instruction. For
thenext nstructions, [
AMADO. So the
del ay for
functi

The
t he

speci al

cost
t he

t

of
dat a

on

can

uni t

be

not i

(SFU)

ced

t he

t hat

AiCOSOo

a

del ay

g it iprggya éXsel®d dokxhese indteugtiensi d e n ¢ y
dependeq oy pf@ d ¢cuioex i COS 0

nstruc

The SFU is a more complex functional unit foresial operations like cosine and sine. The
implementation details of this functional unit are not available. But, we can assume that the SFU has a
deeper pipeline than the SPs, so a stall may influence more stages in the pipeline. In addition, there are
only 4 SFU so it is required to perform more steps compare to the instruction that they are implemented in

SP.

73

Table20 Execution time ofarithmetic Instructions in clock cyclesRaW dependency

#OP ADD MUL COS MAD

1 30 30 30 30

2 48 48 52 48

3 66 66 74 66

4 84 84 96 84

5 102 102 118 102
In Table21 the execution time of mixed typgwithmetici nst ructi ons i s presented;
AnADDO, AMADO with AADDO, and ACOSO with AADDO. Wi

instructions are composable. In this experiment there is not dependency between the instructions. This
experiment was performed to identify if the interaction of different functional units can influence the
execution time. We can observe that the results in the &gl the same with the experiment results
where the same instructions were used. The difference between the two instructions set is 12 clock cycles
(2*6).

Table21 Execution time of mixed typearithmetic Instructions in clockcyclesg No dependencies

#OP MUL ADD | MAD ADD | COS ADD
2 36 36 36
4 48 48 48
6 60 60 60
8 72 72 72

Similarly, Table 22 shows the results from the experiment where all the instructions have a Raw
dependency. For example, in case that we have 4 operations, there are 3 RaW dependencies between the
operations. Aspreviously, the results from the experiments are the same with the ones with the
instructions of the same typle. this work we focus on the instructions that are commonly used. We are

not going to examine in more detail the instructions that are impleaén SFU.

Table22 Execution time of mixedrithmetic Instructions in clock cycles RawW dependencies

#OP MUL ADD | MAD ADD | COS ADD
2 48 48 52
4 84 86 92
6 120 122 132
8 156 160 172

As it is mentioned before, the experiments that were presented until now were using thread block size of
32. The following graphs in this subsection present the behavior of the GPU for different size of thread

block. The experiments present the executior tof instructions for thread block sizes of 32, 64, 128,

256 and 512. On the vertical axis is the execution time in clock cycles. On the horizontal axis is presented
the warp ID of warps in the different block sizes. A group of 32 threads form a wazp executes the

same instruction if no divergence occurs.

74

Figure 50 shows the execution time of one add instruction for thread block of sizes 68 3228, 256

and 512. It can be seen that until 128 of thread block size the execution time is the same for all warps.
However the execution time for the block sizes of 256 and 512 is increased. By increasing the number of
warps, the execution time of ey warp increases also since more warps have to be scheduled. The
instructions of the warps are executed based on the LRR algorithm. So by increasing the number of
warps, the distance between two instructions from the same warp will increase also andsesjaence

the execution time of the warp will increase also.

ADD Block size 32512
60
. 50 x
3 40 | =32
>
2 30 - 64
3
o 20 - w128
10 - m 256
0 - m512
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WarplD

Figure50 one add instruction for different thread block sizes

We execute the experiment 8 times for a thread block size of 512 threads in order to identify if the
procedure is time predictable. The results are presentéidune51 and it can be noticed that for all the
experiments the execution time of the different warps is the same.

ADD Block size 51-2anultiple experiments

60 =—cexpl

g 50 W —m—oxp?

Q40 = eXP3
@)

X 30 exp4

8 20 exps

10 =0 exp6

0 exp’

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e @XP8

WarplD

Figure51 multiple experiments for one add instruction executed by 512 threads (16 warps)

75

Similar experiments were performed for the mad instruction. The results are presdfigpaen? and

Figure53 and follow the same pattern with the add instruction. However, for thread block size of 256 and

512 it can be seen that the execution times of warps have different values compareddotttien times

of the add instruction. For instance, in case of block size of 512 for add warp 1 is the fastest one, while for

mad warp 7 is the fastest one. This level of detail was not possible to be analyzed without the appropriate
documentation, so weer e not able to identify the reason f ¢
AnADDo for thread block sizes of 256 and 512.

MAD Block size 32512
60
v) 50 I I
3 | |
(%‘ 40 m32
x~ 30 - mo64
8
5 20 - m128
10 + m 256
0 - m512
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WarpID
Figure52 One mad instruction for different thread block sizes
MAD Block size 512
Multiple experiments
60 ==—expl
$ 50 W ——exp2
(% 40 == exp3
x 30 exp4
o 20 = exp5
o
10 =0 exp6
0 X7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e eXP8
WarpID

Figure53 multiple experiments for one mad instruction executed by 512 threads (16 warps)

The next experiments are using a mad and add instruction for thread block sizes as usdeicheftd.
shows the results for the experiment where no data dependencies are used. The results are similar to the

76

previous experiments, however it can be noticed that the execution time for thread block size of 256 has a
bigge variation from warp to warp compared to the separate execution of mad and add.

MAD-ADD no dependencies Block size-3312

80
a 1 1 2 1 2 l
L 60 32
G 86
< 40] m 64
3
S 128
O 20 -

256
0 - w512
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WarplD

Figure54 mad-add instructions with no dependency for different thread block sizes

Similar with the previous cases, the experiments performed multiple times to identify if the execution
times of the two instructions differ from experiment to experimenkidnre55it can be seen that all the
experiments have the same execution time, so no variation in the execution time was observed.

MAD-ADD no dependencies Block size 51.
Multiple experiments

80 ==—rexpl
v a=fll=—eXp2
< 60 W P
5‘ == exp3
5 40 == eXp4

fe! .
O 20 e=exps
0 =0 expb
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 —&p7
WarplID exp8

Figure55 Multiple experiments for mad add instruction with ndependency executed by 512 threads (16 warps)

A.2.Shared memory

In this section the instruction for the scratchpad shared memory are presented. The behavior is similar to
the arithmetic instructions. Again, as before, first we are going to perform exeets with few
instructions. Afterward the experiments are executed multiple times to check if the results are the same
from execution to execution.

77

Shared memory load Block size 32512

60

I m32
m64
m128
m 256
m512

Clock Cycles

01 2 3 45 6 7 8 9 10 11 12 13 14 15
Warp ID

Figure56 one load to the shared memory instruction for different thread blksizes

Figure56 shows the execution time of one load instruction to the shared memory. The behavior is the
same as with tharithmeticinstructions. The horizontal axis show the warp ID for the different warps and
the vertical axis shows the execution time in clock cycles. For thread block sizes 32, 64 and 128 the
execution time remains the same due to the restrictions of the schedtilmetbxplained in sections 5

and 6. Similarly with therithmeticinstructions the execution time for thread block size 256 and 512 is
increased since more than 6 warps have to be scheduled.

Shared memory Load Block size 512
Multiple experiment
60
=0—Expl
50
i =l—Exp2
L M "
) ==fe=EXp3
< 30
8 =>=Exp4
o 20
== EXxp5
10
=0—EXp6
0 e EXPT
01 23 456 7 8 9 10111213 14 15
Warp ID Exp8

Figure57 multiple experiments forone load to shared memory instruction executed by 512 threads (16 warps)

78

We performed the same experiment multiple times. For all 8 experiments the execution times of the
different warps were the same. This behavior is expected since the scratchpad memspftware
controlled, orchip memory and there is no interference with any other component.

In the same way the experiments for the store instruction to the shared memory were performed. In
Figure58 the execution time of the one store instruction is presented for block sizes of 32, 64, 128, 256
and 512. Again, the execution time of thread block sizes 32 to 128 is the same as exebuting on
warp. The execution time for one store to the shared memory for thread block sizes 256 and 512 the
execution time increases for the same reasons that we mentioned before.

Shared memory Store Block size 32512
70
60
8 50
(%40 | I I I 32
X 20 m64
5 30 -
8 128
© 20 -
m 256
10 -
0 - m512
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Warp ID

Figure58 one load to the shared memory instruin for different thread block sizes

The experiment for one store instruction to thecbip scratchpad shared memory was performed
multiple times in order to identify different execution times from experiment to experiment.

79

Shared memory Store Block size 512
Miltiple experiments
70
" 60 — —‘-EXpl
L} e B - |
gig C”L‘zcu—gﬂ—» B il —-EXp2
é 30 ==—EXp3
O 20 Exp4
10 == EXp5
0
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 —o~Exp6
Warp ID Exp7

Figure59 multiple experiments for one store to shared memory instruction executed by 512 threads (16 warps)

From the experiments we can see that they same execution time so the scratchpad memory has time
predictable behavior also for store instruction.

The shared memory is analyzed for multiple instructions. For the same thread block sizes that we have
used before we check how the execution time changes for the increasing number of loads and stores to the
shared memonyrigure60 andFigure61 show the latency of load and store to the shared mefapthe
increasing number of instructions. The horizontal axis presents the number of operations and the vertical
axis the execution time in clock cycles. We present only the slowest warp since the slowest warp
determines the overall execution time.

From the two diagrams it can be seen that the latency for store and load to the shared memory increases
linearly with the linear increase of the instructions for all thread block sizes. Moreover, for thread block
sizes 32, 64, 128 and 256 the execution tiofethe slowest warp are the same. The lines are on top of
each other. For the case of 512 threads the execution time increases since.

80

1200

1000

800

600

Clock Cycles

400

200

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
#LDS

LoadShmemSameaddress32to 512 Slowest Warp

——512
—-—256
128
64
32

Figure60 Latency of the load to shared memory instruction for increasing numbemstructions

1200
1000
800
600
400
200

Clock Cycles

StoreShmem32to 512 Slowest Warp

¢—512

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

#STS

—m-256
128
=64
32

Figure61 Latency of the store to shared memory instruction for increasing number of instructions

A.3. Global memory

In this section the execution time of load and store to the global memory is discussed. The experiment
performed in a similar way as before. The horizontal axis show the number of operations and the vertical
axis show the execution time in clock cycléggure 62 shows the latency of 32 load instruction to the
global memory of the slowest warp for thread block size of 32, 64, 128, 256 and 512. Fecalidhhe
latency of load instruction increases linearly with a linear increase of the number of the instructions.
Furthermore, the slop for all the thread block sizes is the same but they start from different initial points.

81

Load HW Global addr 32 to 512 Slowest Wa

1600
1400
, 1200
1000
800
600
400
200

c

Clock Cycle

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
#LD

Figure62 Thirty two load instructions to the global memory for thread block sizes of 32, 64, 128, 256 and 512.

Store HW Global mem Same addr 32 to 51.
Slowest Warps

5000
v, 4000
S ——512
5‘ 3000
X~ == 256
o
8 2000 128
1000 - 4
0 =232
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
#ST

Figure63 Thirty two store instructions to the global memory for thread block sizes of 32, 64, 128, 256 and 512.

Figure63 shows 32 stores to the global memory for the slowest warp of thread block sizes of 32, 64, 128,
256 and 512. For thread block sizes of 82,and 128 the execution time is the same. For these three
cases the execution time increases linearly with the linear increase to the number of instructions. For the
cases of 256 and 512 thread block sizes Compared to load the execution time of tloleaizédois

smaller but for thread block sizes of 256 and 512.is m

82

Appendix B: Detailed GPGPU-Sim diagram

In this section the architecture of the GRSlth is analyzed in more detail.
Figure64 shows a detail architecture block diagram of the GPGRW[3]. It was made based &igure
10. The components éfigure10were extracted. The detail functionality can be found in [ref].

The diagram is separated in two parts. Firgrahis the SIMT front. From the instruction cache the
instructions are fetched. The instructions are decoded and stored in the instruction buffer. The RaW and
WaW dependencies are checked in the scoreboard. From the implementation oBGFP®E found that

there is only one scoreboard for the two schedulers in comparisoRigitte 10 that suggest that there is

one for every scheduler. The schedulerodas which warp is going to be issued from the dispatch unit.
Furthermore, the SIMBtack is used to handle the branch divergence. It stores the diverge (PR) and
converge points (RPC) of each warp.

The SIMD datapath consists of the operacallector, the shared memory (scratchpad and level 1 data
cache) and the SIMD execution units (SP and SFU). In practice the register file is a small SRAM memory
with 4 banks and arbitration logic that is responsible to avoid the bank conflicts.

The blueparts show the memories (instruction and data). The green parts are the buffer of the system;
scoreboard, PC for the all the threads, instruction buffer, SIMT stack and collector units. The orange parts
are the arbiters of the architecture. The brown cshoms the register file with the four banks. The purple
color shows the SIMD execution units and load store units.

83

Font End SIMD Datapath
e
Sranch tanget
” [JinctroctionSufter ST Stack
pE Instrustady RPC | aciie Masc
=
=
5
7T
=
°C
=
—— B Collsctar units
warp mad
—
Register File —
1 |—
] —
Sored R
Bosrd lasue _._|_ Warg mad
O % —s
‘Warp Mo Addr SiMD Ready | | .
&l] Instr I 1 — u!!
Demode [o [Eseation
uinit
A Sang 7 ‘Wang mad
-
_l&| 1
Lol
lnsus
- Bani 3 i
" I
L1 _Jﬂ| L | L] mad |._ =
—
—
—
Dane

Figure 64 detailed GPGPUSIM architecture diagram

84

Appendix C: Program trace from GPGPU-Sim

The tables show the three different states that the warp can be. The first column present the starting time
in clock cycles. The other two tables show the warps. In the first column is the WID and the second
column the instruction that is executed. Col@aming

Green: The warp is executed.

Red: The warp is stalled.

Yellow: The warp is stalled in scorebord, so it has to wait for the dependencies to be resolved.
Purple: The execution units are not available.

=A =4 =4 =4

Active
Odd Scheduler Even Scheduler

Idle because of RaW dependencies.

Scoreboard delay

Scoreboard delay]

Scoreboard delay Scoreboard delay

|
|

Scoreboard delay

Scoreboard delay
Scoreboard delay

Idle because the execution units are not available.

85

Appendix D: Acronyms and Abbreviations

Meaning Meaning
ACET Average Case Execution Time NVCC Nvidia CUDA Compiler
ADD Addition 000 Out of Order
BCET Best Case Execution Time OpenCL Open Computing Language
CC Clock Cycles PCI Peripheral Component Interconnect
CPI Cycles Per Instruction PTX Parallel Thread Execution
CPU Central Process Unit RAM Random Access Memory
CTA Cooperative Thread Array RawW Read after Write

Store special register to genepailrpose
CUBIN CUDA Binary S2R Register.
CUDA Compute Unified Device Architecture SDK software development kit
D2H Device to Host SFU Special Function Unit
DMA Direct Memory Access SHL Shift Left
GDDR graphics double data rate SIMD Single Instruction Multiple Data
GDRAM Graphic Dynamic Random Access Memory | SIMT Single Instruction Multiple Threads
GPGPU GeneralPurposeGraphics Process Unit SM StreamingMultiprocessor
GeneralPurposeGraphics Process Unit

GPGPUSIm Simulator SP Streaming processor
GPU Graphics Process Unit SPARC ScalableProcessoARChitecture
GTO Greedy Then Oldest ST.E Store External
H2D Host to Device STS Store shared
ISA Instruction Set Architecture TBi Thread Block with ID i
KB Kilo Byte Ti Thread with ID i
L1 $D Level 1 Data cache TL Two Level
L1 sl Level 1 Instruction cache TLP Thread LeveParallelism
LB Lower Bound UB Upper Bound
LD.E Load External Waw Write after Write
LD/ST Load/Store WCET Worst Case Execution Time
LDS Load shared Wi Warp with ID i
LRR Loose Round Robin WID warp ID
LRU Least Recently Used
MAD multiply addition
MWP Memory Warp Parallelism

86

