
Algorithmic Species Revisited: A Program Code
Classification Based on Array References

Cedric Nugteren, Rosilde Corvino, and Henk Corporaal
Eindhoven University of Technology, The Netherlands

c.nugteren@tue.nl, r.corvino@tue.nl, h.corporaal@tue.nl

Abstract—The shift towards parallel processor architectures
has made programming, performance prediction and code gen-
eration increasingly challenging. Abstract representations of
program code (i.e. classifications) have been introduced to address
this challenge. An example is ‘algorithmic species’, a mem-
ory access pattern classification of loop nests. It provides an
architecture-agnostic structured view of program code, allowing
programmers and compilers to take for example parallelisation
decisions or perform memory hierarchy optimisations.

The existing algorithmic species theory is based on the
polyhedral model and is limited to static affine loop nests.
In this work, we first present a revised theory of algorithmic
species that overcomes this limitation. The theory consists of
a 5-tuple characterisation of individual array references and
their corresponding merging operation. Second, we present an
extension of this theory named SPECIES+, providing a more
detailed 6-tuple characterisation. With this, we are able to retain
relevant access pattern information not captured by the original
algorithmic species, such as column-major versus row-major
matrix accesses. We implement both new theories into a tool,
enabling automatic classification of program code.

I. INTRODUCTION

Programming, performance prediction, and code generation

have become increasingly challenging over the last decade

due to the shift towards parallel processor architectures [9].

Examples are multi-core CPUs, graphics processing units

(GPUs), and many-core architectures such as the Kalray MPPA

and Intel MIC. It has become paramount for programmers,

performance models, and compilers to carefully deal with

the parallelism and multi-level memory hierarchy exposed

by these architectures, especially considering the memory

wall [9], [18] and the prospect of dark silicon [7].

In this work, we revisit ‘algorithmic species’ [13], a mem-

ory access pattern based classification targeted at parallel

architectures such as GPUs. Algorithmic species provide an

architecture-agnostic structured classification (or summary) of

code. Programmers and compilers can use this for example to

take parallelisation decisions or to perform memory hierarchy

optimisations. However, in this work we only present the

classification itself and not the optimisations.

The theory behind algorithmic species is based on the poly-

hedral model [8], requiring code to be represented as a set of

static affine loop nests1. In this work, we present a new theory

of algorithmic species such that it is no longer polyhedral

1We define static affine loop nests as loop nests with static loop control,
affine loop bounds, affine conditional statements, and affine array references.

model based and thus broader applicable. Additionally, we

introduce a more detailed SPECIES+ classification. We make

the following contributions:

• We introduce a 5-tuple characterisation of array refer-

ences with respect to loop nests (section III). On top of

this, we define transformations to merge characterisations

referring to the same array and to translate them into

algorithmic species (section IV). This new theory allows

us to classify non static affine loop nests (section V-B).

• We present SPECIES+, a classification based on more de-

tailed 6-tuple abstractions that take the loop nest structure

into account and retain additional performance-relevant

information (section V-A).

• We describe a tool based on the presented theories to

automatically classify program code (section VI).

II. BACKGROUND AND MOTIVATION

Algorithmic species is an algorithm classification based on

access patterns of arrays in loop nests [13]. The classification

is designed to fulfil the following goals: 1) programmers

can reason about their program code by means of algorithm

classes, 2) performance models can use class information

to predict performance, and 3) compilers can be designed

based on the classification. To achieve this, the following

requirements for classes are set [13]: automatically extracted,

intuitive, formally defined, complete and fine-grained. Note

that species are a means to classify parallel code rather than

a tool to extract additional parallelism from program code.

To illustrate algorithmic species, let us consider the matrix-

vector multiplication in figure 1. The corresponding species

can be interpreted as follows: to produce a single element out

of the total 32 elements in r, we need a chunk of data in the

second dimension of M (a row) and the full array v of size 64.

This captures the structure of the example and can be used for

classification. More details and examples can be found in [13].

1 f o r (i =0 ; i <32; i ++) {
2 r [i] = 0 ;
3 f o r (j =0 ; j <64; j ++) {
4 r [i] += M[i] [j]∗ v [j] ;
5 }
6 }

0 63

0

31

0

31

0

63

0

63

0

31

0

31

+

+

→

→

M v r

M[0:31,0:63]chunk(-,0:63) ∧ v[0:63]full → r[0:31]element

Fig. 1. Matrix-vector multiplication classified as species. The right hand side
illustrates the address space of 2 iterations of the i-loop in different colours.978-1-4799-1010-6/13/$31.00 c© 2013 IEEE

Algorithmic species are used for example in a skeleton-

based source-to-source compiler [14] to achieve (performance)

portability across different architectures. Skeletons can be seen

as parametrised template code for a specific class of compu-

tations on a specific target processor. The compiler’s task is

to instantiate such a skeleton and to generate efficient target

code. In [14], skeletons correspond directly to the algorithmic

species: choosing a skeleton is a matter of classifying the code.

Similar to related classifications such as array regions [5]

and Æcute [11], algorithmic species give an abstraction of

program code: information is lost in the translation from code

to species. The level of abstraction of species is a trade-off to

meet the aforementioned goals, e.g. it should be suitable for

both manual and automatic uses. The main abstractions are:

• Species are specified with respect to loop nests for which

the order of execution of nested loops and loop iterations

is irrelevant, i.e. any order will preserve the semantics

(e.g. loop i in figure 1).

• Species may give an over-approximation: not all specified

accesses have to be made. For example, if the matrix-

vector multiplication would not access element V[19]

because of a condition guarding line 4 in figure 1, the

species would remain unchanged.

• The performed computation is abstracted away. Species

focus instead on parallelism and memory access patterns.

Because the algorithmic species theory [13] is based on the

polyhedral model [8], completeness and automatic extraction

can at best be achieved only for code that is represented as

static affine loop nests. Therefore, we propose to develop a

new formal definition of species that is not based on the poly-

hedral model. Furthermore, we propose to unify the original

array access patterns (i.e. element, chunk, neighbourhood, full,

and shared) to create a unified and more structured theory. The

intuition behind this is that many of these patterns are special

cases of others. For example, the element pattern can be seen

as a chunk access pattern of size 1.

In addition to revisiting the theory of algorithmic species,

we also introduce SPECIES+, a more detailed classification.

This is motivated by the fact that two equal species could still

have significantly different memory access patterns (shown in

section VII). The reason for this is the abstraction of the order

of execution of nested loops and loop iterations, limiting the

identification of memory and cache-friendly access patterns.

For example, a tiled loop and its non-tiled counterpart are

currently classified as the same algorithmic species.

III. CHARACTERISING ARRAY REFERENCES

We base our new theory for algorithmic species on char-

acteristics of individual array references in loop nests. In this

section we define this characterisation. For now, let us consider

only static affine loop nests. We restrict our work to arrays that

do not alias and assume functions to be inlined.

A. Basic case: single loop and 1-dimensional arrays

First, let us discuss the case for which our loop nest contains

only a single loop, and array references are all 1-dimensional.

Following, in section III-B, we consider the general case with

a loop nest of one or more (N) loops and references to one

or multi (M) dimensional arrays.

As an example of a single loop with 1-dimensional ref-

erences, consider figure 2 and the reference to array A with

respect to the i-loop. We characterise this reference by its name

(A), its access type (r for read), its domain with respect to

the loop (lower-bound 2 and upper-bound 7), its per-iteration

accessed size (1 element), and its iteration step (1 element).

This forms the 5-tuple (A, r, [2..7], 1, 1). For the reference to

B, we obtain in a similar way (B, w, [0..5], 1, 1).

1 f o r (i =2 ; i <8; i ++) {
2 B[i −2] = A[i] ;
3 }

i = 3
i = 4

A[2] A[7]

Fig. 2. Example code with a static affine loop. The right hand side illustrates
the domain of A (filled circles) and two iterations of the i-loop (purple circles).

In general, we characterise each array reference in a static

affine loop nest as a 5-tuple R = (N ,A,D, E ,S). The tuple’s

elements are defined as follows:

• N is the array’s name, given as a string.

• A ∈ (r, w) is the access type (r for read and w for write).

• D ∈ [Z..Z] gives the integer address space domain of

array references with respect to the loop nest, represented

as an interval with a lower-bound and an upper-bound.

• E ∈ N gives the number of elements accessed. Note that

E = 1 unless there is an additional loop inside the body

of our reference loop nest (prior to merging: section IV).

• S ∈ (Z, Q) gives the step. Note that the step can be

negative in case of a backwards counting loop, zero in

case of a loop independent reference, or a unit fraction in

case of a non-monotonic step. For example, the fraction
1
4 represents a step taken every 4 iterations.

To further illustrate the basic characterisation of array

references, we discuss several other examples. Let us consider

the code snippet of figure 3. The first loop (lines 1-7) and the

second loop (lines 8-10) are functionally equivalent. For both

loops, we find the characterisation (G, r, [0..4], 1, 2) for the

reference to G and (H,w, [0..2], 1, 1) for the reference to H.

1 f o r (i =0 ; i <8; i ++) {
2 i f (i % 2 == 0) {
3 i f (i < 6) {
4 H[i / 2] = G[i] ;
5 }
6 }
7 }
8 f o r (i =0 ; i <3; i ++) {
9 H[i] = G[i ∗ 2] ;

10 }

i = 2
i = 4

G[0] G[4]

i = 2
i = 4

H[0] H[2]

Fig. 3. Example of two functionally equal loops illustrating the characterisa-
tion. The illustrations of two iterations of the loop on the right hand side are
valid for both loops. The i/2 division is assumed to be an integer division.

Let us now consider the two functionally equivalent loops

shown in figure 4. For these loops, we will construct the

references with respect to the outer i-loop only. Although

the two code snippets are functionally equivalent, the char-

acterisation of the references to array P is distinct. For the

first loop (lines 1-6) we characterise the reference to P as

(P, r, [0..7], 2, 2), and to Q as (Q, w, [0..3], 1, 1). Note that we

obtain a step S = 2 for P because of the j-loop. For the

second loop (lines 7-9), we find two references to P, described

as (P, r, [0..6], 1, 2) and (P, r, [1..7], 1, 2). The characterisation

of Q remains as before. To obtain the same result for both

loops, we describe the merging of two 5-tuples in section IV.

1 f o r (i =0 ; i <4; i ++) {
2 Q[i] = 0 ;
3 f o r (j =0 ; j <2; j ++) {
4 Q[i] += P [2∗ i + j] ;
5 }
6 }
7 f o r (i =0 ; i <4; i ++) {
8 Q[i] = P [2∗ i]+P [2∗ i + 1] ;
9 }

i = 1
i = 2

P[0] P[7]

i = 1
i = 2

Q[0] Q[3]

i = 1
i = 2

P[0] P[6]

i = 1
i = 2

P[1] P[7]

Fig. 4. Example of two functionally equal loops. The right hand side
illustrates (top to bottom): the reference to P for the first loop (lines 1-6),
the reference to Q for both loops, the first reference to P for the second loop
(lines 7-9), and the second reference to P for the second loop.

B. General case: N loops and M -dimensional arrays

As discussed, the algorithmic species theory as presented

in [13] abstracts away the execution order of the N loops and

their iterations. Therefore, we perform the same abstraction in

this section for our revised theory based on array reference

characterisations. The more detailed classification SPECIES+

discussed in section V-A does not make this abstraction.

To be able to characterise M -dimensional arrays, we modify

the 5-tuple R by adding a dimension to the domain D, the

number of elements E , and the step S. We represent the

different array dimensions as a set with angular brackets,

i.e. D = 〈D1,D2, ...,DM 〉, E = 〈E1, E2, ..., EM 〉, and S =
〈S1,S2, ...,SM 〉. The individual Di, Ei, and Si retain their

definition of the 1-dimensional case (section III-A). The total

number of elements now becomes the product of the number

of elements in each dimension. In case there is only a single

dimension, we omit the angular brackets from our notation.

Now, let us consider the characterisation of array references

with respect to loops i and j for the example code in lines 1-

5 of figure 5. If we apply our characterisation, we obtain the

following tuples (along with their corresponding description

as algorithmic species):

(R, r, 〈[0..7], [0..7]〉, 〈1, 1〉, 〈
1

8
, 1〉) → R[0:7][0:7]element

(S, w, [0..63], 1, 1) → S[0:63]element

(T, r, [0..7], 1,
1

8
) → T[0:7]element

In this characterisation, 1
8 as a step for T represents a unit step

every 8 loop iterations, and 〈 1
8 , 1〉 as a step for R represents

a unit step every 8 iterations in the first dimension, and a

unit step in the second dimension (modulo the domain). The

abstraction of algorithmic species allows us to rewrite lines

1-5 of figure 5 as lines 6-8. Although lines 6-8 have only

a single loop, the characterisation of the references to arrays

R, S, and T remains as above. We therefore re-classify this

example using an extended characterisation in section V-A.

1 f o r (i =0 ; i <8; i ++) {
2 f o r (j =0 ; j <8; j ++) {
3 S [i ∗8+ j] = R[i] [j] + T [i] ;
4 }
5 }
6 f o r (k =0; k<64; i ++) {
7 S [k] = R[k / 8] [k%8] + T [k / 8] ;
8 }

Fig. 5. Example code with multiple loops and multi-dimensional arrays.

As a second example of multi-dimensional arrays, consider

the matrix-vector multiplication of figure 1. If we characterise

this code with respect to loop i, we obtain the following:

(M, r, 〈[0..31], [0..63]〉, 〈1, 64〉, 〈1, 0〉) → M[0:31,0:63]chunk(−,0:63)

(v, r, [0..63], 64, 0) → v[0:63]full

(r, w, [0..31], 1, 1) → r[0:31]element

Here, the step 〈1, 0〉 for M reflects the fact that references to

the second dimension are independent of the i-loop: a whole

row of the matrix is accessed at every iteration of the i-loop.

IV. MERGING AND TRANSLATING INTO SPECIES

Before being able to translate array reference characterisa-

tions into algorithmic species, we need to perform a merging

step. We merge the characterisations of individual array refer-

ences in order to: 1) form compound patterns such as tile and

neighbourhood, and 2) abstract away implementation choices

(e.g. consider the loop unrolling performed in figure 4).

A. Merging array references

For a pair of array references Ra and Rb, merging is only

performed for references with equal names (Na = Nb), access

types (Aa = Ab) and steps (Sa = Sb). Let us first consider an

example of merging. In the example of figure 4, the references

to array P in the second loop (lines 7-9) can be merged. For

this example, we merge (P, r, [0..6], 1, 2) and (P, r, [1..7], 1, 2)
into (P, r, [0..7], 2, 2). This gives us the same result as the

characterisation of P for the first loop of figure 4 (lines 1-6).

We describe the rules for merging in the form of algo-

rithm 1. The algorithm is repeatedly executed until no changes

to the set of array references R for a single loop nest are made.

It considers each pair Ra,Rb ∈ R and proceeds as follows:

1) Check the condition of matching names, access type, and

step (line 2 of algorithm 1).

2) Check whether the lengths of the domains are equal and

if there is intersection (line 3).

3) Calculate the domain Dnew as the union Da ∪ Db and

the number of elements Enew as the absolute difference

between the bounds of the domains (lines 4-5).

4) Continue only if the new number of elements Enew is

within a threshold tgap (illustrated later on) from the sum

of the old number of elements (line 6).

5) Replace the tuples Ra and Rb with Rnew (lines 7-8).

Input: array references R (w.r.t. a loop nest)
1 foreach {Ra,Rb} ∈ R do
2 if Na = Nb and Aa = Ab and Sa = Sb then
3 if |Da| = |Db| and Da ∩ Db 6= ∅ then
4 Dnew = Da ∪ Db

5 Enew = |min(Da)−min(Db)|
6 if Ea + Eb + tgap > Enew then
7 Rnew = (Na,Aa,Dnew, Enew,Sa)
8 replace Ra and Rb with Rnew in R

9 end
10 end
11 end
12 end

Algorithm 1: Algorithm to perform the merging of a pair of array references.

To illustrate merging in case of a neighbourhood access

pattern, consider the example of figure 6. Here, we find 3

references to array V which we characterise as RV[i-1] =
(V, r, [0..5], 1, 1), RV[i] = (V, r, [1..6], 1, 1), and RV[i+1] =
(V, r, [2..7], 1, 1). By calculating the combined domain D and

the number of elements E , we obtain (V, r, [0..7], 3, 1). This

captures the overlap of references between iterations as the

number of elements E (3) is now larger than the step S (1).

1 f o r (i =1 ; i <7; i ++) {
2 W[i] = V[i −1] +
3 V[i] +
4 V[i + 1] ;
5 }

i = 3
i = 4

V[0] V[5]

i = 3
i = 4

V[1] V[6]

i = 3
i = 4

V[2] V[7]

Fig. 6. Example of a neighbourhood read access pattern. The right hand
side illustrates two iterations of the i-loop for the 3 references to V.

Furthermore, let us consider the example of interpolation

(figure 7) where the set of reads per iteration is not convex:

there is a gap between references K[i-1] and K[i+1].

For the input array references, we find (K, r, [0..4], 1, 2)
and (K, r, [2..6], 1, 2). Now, we can choose to treat these

as two separate element accesses, or merge them into a

neighbourhood access. If we perform the latter, we obtain

(K, r, [0..6], 3, 2), which gives us an over-approximation: we

may access 3 elements each iteration, but do access only the 2

extreme elements. Whether or not such an outcome is desired

can be set with the tgap variable in algorithm 1. The original

algorithmic species theory [13] does not discuss the issue of

non-convex sets, implying tgap = ∞.

1 f o r (i =1 ; i <6; i +=2) {
2 K[i] = K[i −1] + K[i + 1] ;
3 }

i = 3
i = 5

K[0] K[4]

i = 3
i = 5

K[2] K[6]

i = 3
i = 5

K[1] K[5]

Fig. 7. Example of an implementation of interpolation. The two read
references to array K are candidates for merging.

B. Translating array references into species

Once the found array references are merged (where possi-

ble), they can be translated into the algorithmic species of [13].

Species can thus be seen as an abstract representation of a

combination of our 5-tuple characterisations. For automated

use (e.g. in compilers), it might be advantageous to use the

characterisations directly, as they could provide additional in-

formation. Nevertheless, in case of manual uses, using species

can provide better understandability and usability.

Input: array references R after merging (w.r.t. a loop nest)
1 X = ∅
2 foreach Ra ∈ R do
3 if Sa = 0 and Aa = r then
4 X ← Na Da full
5 else if Sa = 0 and Aa = w then
6 X ← Na Da shared
7 else if Ea = 1 then
8 X ← Na Da element
9 else if Sa < Ea then

10 X ← Na Da neighbourhood (Ea)
11 else
12 X ← Na Da chunk (Ea)
13 end
14 end

Algorithm 2: Algorithm to extract patterns from array references.

We present algorithm 2 to extract patterns from our charac-

terisation. The algorithm processes each characterisation Ra

(after merging) as follows (line numbers refer to algorithm 2):

• 3-6 If Ra has a zero step, it belongs either to the full (for

reads) or shared (for writes) pattern.

• 7-8 Else, if precisely a single element of Ra is accessed

every iteration, it is classified as the element pattern.

• 9-10 Else, if the amount of elements accessed is larger

than the step size, there is overlap between iterations.

This is captured by the neighbourhood pattern.

• 11-13 If non of the above holds, Ra belongs to the chunk

pattern. This is the case if multiple elements are accessed,

but there is no overlap between successive iterations.

As shown in algorithm 2, the algorithm also prefixes the

names (Na) and domains (Da), and includes the number of

elements accessed for the neighbourhood and chunk patterns.

The final algorithmic species is obtained by taking the re-

sults of algorithm 2 (in X) and combining them as follows:

I1 ∧ ... ∧ In → O1 ∧ ... ∧ Om, in which Ix represent inputs

(Ax = r) and Ox represent outputs (Ax = w).

V. BEYOND ALGORITHMIC SPECIES

One of the goals of the new theory behind algorithmic

species is to be able to extend the applicability and expres-

siveness of species. We do this in two ways: 1) we provide

SPECIES+, a more detailed classification, and 2) we classify

non static affine loop nests.

A. SPECIES+: a more detailed classification

Embedding additional information in our array reference

characterisations can improve the current uses of algorithmic

species and enable new uses. For example, consider the three

references to the array X in figure 8. All three references would

be characterised as (X, r, [0..63], 1, 1) with respect to the loop

nest, while cache behaviour (e.g. row-major or column-major)

and performance can differ significantly.

1 f o r (i =0 ; i <8; i ++) {
2 f o r (j =0 ; j <8; j ++) {
3 Y[i] [j] = X[i ∗8+ j] + X[j ∗8+ i] ;
4 }
5 }
6 f o r (k =0; k<64; k ++) {
7 Z [k] = X[k] ;
8 }

Fig. 8. Accessing the 64 first elements of array X in three different ways.

In this section we propose to create a more detailed charac-

terisation, allowing us to distinguish among others the accesses

made to X in figure 8. To do so, we modify the 5-tuple array

reference characterisation to obtain a 6-tuple by appending a

repetition factor X . Earlier, we included the dimensions of

the arrays into S to obtain S = 〈S1,S2, ...,SM 〉. Now, we

modify each step Sx to become a set of size N (with N

the number of loops in the nest). To distinguish the array

dimensions from the number of loops, we use a different

notation: Sx = Sx,1|Sx,2|...|Sx,N . This can also be represented

as a matrix with N columns and M rows:








S1,1 S2,1 ... SN,1

S1,2 S2,2 ... SN,2

...

S1,M S2,M ... SN,M









The new repetition factor X reflects the iteration count of

the two loops: it is also a set of N items and uses the same

notation: X = X1|X2|...|XN We use the name SPECIES+ to

refer to a set of 6-tuple classifications for a given loop nest.

For example, consider the access to array A in fig-

ure 9. The new 6-tuple array reference characterisation

becomes (A, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8). Here, the

step 〈1|0, 0|1〉 or
[

1 0
0 1

]

represents a reference to the first

dimension every iteration of the first loop i and a reference to

the second dimension every iteration of the second loop j. The

repetition factor 8|8 represents the iteration count of the two

loops. For the access to array B in figure 9 the step changes

into 〈0|1, 1|0〉. Finally, for C, the step becomes 〈1, 1〉 and the

repetition factor becomes 8 (there is only a single loop).

1 f o r (i =0 ; i <8; i ++) {
2 f o r (j =0 ; j <8; j ++) {
3 B[j] [i] = A[i] [j] ;
4 }
5 }
6 f o r (i =0 ; i <8; i ++) {
7 C[i] [i] = 0 ;
8 }

0 7

0

7

Fig. 9. Additional examples of two-dimensional array references. The right
hand side illustrates the accesses made to the array C.

Let us consider the example of X in figure 8 again. Now,

we can construct the more detailed 6-tuple array reference

characterisations as follows:

RX[i∗8+j] = (X, r, [0..63], 1, 8|1, 8|8)

RX[j∗8+i] = (X, r, [0..63], 1, 1|8, 8|8)

RX[k] = (X, r, [0..63], 1, 1, 64)

The different steps S now show the differences between the

3 access types. We are now able to distinguish between e.g. a

row-major and a column-major access. For completeness, let

us also re-classify the accesses made to R, S, and T as found

in example 5 using SPECIES+:

RR[i][j] = (R, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8)

RR[k/8][k%8] = (R, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈
1

8
, 1〉, 64)

RS[i∗8+j] = (S, w, [0..63], 1, 8|1, 8|8)

RS[k] = (S, w, [0..63], 1, 1, 64)

RT[i] = (T, r, [0..7], 1, 1|0, 8|8)

RT[k/8] = (T, r, [0..7], 1,
1

8
, 64)

B. Non static affine loop nests

So far, we have considered only static affine loop nests. In

this section, we discuss a number of examples that violate one

of the constraints of static affine loop nests: 1) non-static loop

control, 2) non-affine loop bounds, 3) non-affine conditional

statements, and 4) non-affine array references. The examples

are listed in figure 10. For simplicity, we use the original 5-

tuple representation in this section instead of SPECIES+.

1 / / Non−s t a t i c c o n t r o l
2 i = 0 ;
3 whi le (i <8) {
4 B[i] = A[i] ;
5 i = i + A[i] ;
6 }
7 / / Non−a f f i n e bound
8 f o r (i =0 ; i<8− i ∗ i ; i ++) {
9 H[0] = G[i] ;

10 }

11 / / Non−a f f i n e c o n d i t i o n
12 f o r (i =0 ; i <8; i ++) {
13 i f (P [i] > 12) {
14 P [i] = 0 ;
15 }
16 }
17 / / Non−a f f i n e r e f e r e n c e s
18 f o r (i =0 ; i <8; i ++) {
19 S [T [i]] = R[i ∗ i] ;
20 }

Fig. 10. Examples of non static affine loop nests.

Consider the example with non-static control in lines 1-6

of figure 10. Every iteration of the loop, we increment i by

a value dependent on the memory state. This leads to a case

where the iteration step S is unknown at compile-time and

might not even be constant. In this case, we do not characterise

the references.

Now, let us consider the example with non-affine loop

bounds (lines 7-10, figure 10). Although the loop bound is

not affine, we can still find the upper-bound (i ≤ 3) at

compile-time for this particular example. Doing so, we obtain

(G, r, [0..3], 1, 1) and (H,w, [0..0], 1, 0). However, determin-

ing the domain D for a loop with non-affine loop bounds is not

always possible. Consider the loop bound i<G[i] instead. In

this case, we can only provide an over-approximation of the

domain based on the programmer’s knowledge or on the type

of G, e.g. 255 for a 1-byte unsigned char C data-type.

In lines 11-16 of figure 10 we show an example with a

non-affine conditional statement. In case the condition would

not be present, the reference to P would be characterised as

(P,w, [0..7], 1, 1). Since we cannot know upfront whether or

not the condition will evaluate to true or false, we have to

use the original classification. This can be seen as an over-

approximation: stepping through the domain with a unit step,

but not necessarily performing a read access every time.

The final example in lines 17-20 of figure 10 shows an affine

array reference T and two non-affine array references R and

S. We characterise the affine reference as (T, r, [0..7], 1, 1).
The reference to R has a non-constant step. We therefore

use (R, r, [0..49], 1, 1), giving an over-approximation of the

domain and the step: not all elements are accessed. For the

reference to S, we could include type information of T. As-

suming a range of 0 to 255, we obtain (S, w, [0..255], 256, 0).
This is as if we write to all locations every loop iteration.

VI. AUTOMATIC EXTRACTION OF CLASSES

The original algorithmic species theory [13] included ASET,

the polyhedral-based ‘algorithmic species extraction tool’ [6].

Along with the new theory, we present a new automatic

extraction tool named A-DARWIN2. This tool is largely equal

to ASET in terms of functionality, but is different internally.

The tool is based on a C99 parser which allows analysis on

an abstract syntax tree (AST). From the AST, the tool extracts

the array references and constructs a 5 or 6-tuple R for each

loop nest. Following, the merging is applied as described by

algorithm 1 and the species are extracted as described by

algorithm 2. Finally, the species are inserted as pragma’s in

the original source code.

Algorithmic species and A-DARWIN are not designed to

perform loop transformations nor to create parallel loops. A

parallelising tool (such as PLUTO) could be used as a pre-

processor to create (e.g. through loop skewing) and identify

parallel loops. In case parallel loops are not identified a-priori,

A-DARWIN also includes basic dependence analysis. The main

reason to include this is to allow A-DARWIN to be usable

as a stand-alone tool. First, we apply Bernstein’s conditions,

2A-DARWIN is short for ‘automatic Darwin’, named after the author of ‘On

the Origin of Species’. It is available through http://parse.ele.tue.nl/species/.

leaving us with pairs Ra and Rb for which Na = Nb and

Aa 6= r ∨ Ab 6= r. We apply a combination of the GCD and

Banerjee tests [12] on the remaining pairs. Together, these tests

are conservative, i.e. we might not find all parallel loops. This

can be improved by invoking more advanced tests, such as the

I-test [12] or the Omega test [15].

Static analysis has a limited scope of applicability. For

example, loop nests such as those in figure 10 cannot al-

ways be fully analysed. Therefore, A-DARWIN will classify

species in some cases as over-approximations. These over-

approximations can be tightened using either programmer’s

knowledge (manual) or run-time information (dynamic).

Since the 6-tuple classifications SPECIES+ can embed more

information than the original algorithmic species, A-DARWIN

also contains an option to output the full SPECIES+ classifi-

cation instead.

VII. EVALUATION

We have evaluated A-DARWIN and the presented theory on

the PolyBench benchmark suite, obtaining the same results as

in [13]. We do not further discuss these results here. However,

since we also provide the alternative SPECIES+ classification,

we discuss a few examples in this section to highlight the clas-

sification differences when compared to algorithmic species.

Additionally, we illustrate a nested classification and discuss

the known limitations to the current theory. For an evaluation

of the use of species within a compiler, we refer to [14].

Let us first consider the syrk example from the PolyBench

suite as given in figure 11. If we classify this example as

algorithmic species with respect to loops i and j, we find

an element access pattern for B both as input and as output.

Furthermore, we find A twice as input with the chunk pattern,

in both cases accessing a full row. In the algorithmic species

classification, it is not possible to make a distinction between

the two accesses to A. In contrast, if we apply the 6-tuple

classification SPECIES+ to A, we obtain the following:

RA[i][k] = (A, r, 〈[0..N][0..M]〉, 〈1, M〉, 〈1|0, 0|0〉, N |N)

RA[j][k] = (A, r, 〈[0..N][0..M]〉, 〈1, M〉, 〈0|1, 0|0〉, N |N)

This does not only show the difference between the two

references (a step for the i loop or for the j loop), but also

shows the fact that every row is accessed N times.

1 f o r (i =0 ; i <=N; i ++)
2 f o r (j =0 ; j <=N; j ++) {
3 B[i] [j] ∗= b e t a ;
4 f o r (k =0; k<=M; k ++)
5 B[i] [j] += a l p h a ∗ A[i] [k] ∗ A[j] [k] ;
6 }

B[0:N,0:N]|element ∧ A[0:N,0:M]|chunk(-,0:M) ∧

A[0:N,0:M]|chunk(-,0:M) → B[0:N,0:N]|element

Fig. 11. Code to compute symmetric rank-k operations (syrk in the
PolyBench suite) and its classification as algorithmic species.

As another example, consider the code in figure 12, which

shows a backwards counting loop and two read references

to C. With algorithmic species, we are unable to distinguish

the two reads. However, if we use the 6-tuple classification

instead, we obtain:

RC[i] = (C, r, [0..7], 1,−1, 8)

RC[7−i] = (C, r, [0..7], 1, 1, 8)

The difference between the two steps (−1 and 1) shows the

order in which the array C is referred to, but also the relation

between the two references.

1 f o r (i =7 ; i >=0; i−−) {
2 D[i] = C[i] + C[7− i] ;
3 }

C[0:7]|element ∧ C[0:7]|element → C[0:7]|element

Fig. 12. Code example of a backwards counting loop with two reads to C,
and its classification as algorithmic species.

Next, let us consider an example of loop tiling. Loop

tiling is a loop transformation that can be used for example

to obtain better cache behaviour. In figure 13, we show an

example of non-tiled code (lines 1-3) and tiled code (lines

4-8). In this case, the tile size is 2x2, visible through the

step-size of the i and j loops and the bounds of the ii

and jj loops. The reference to E would classify as the

species ‘E[0:7][0:7]element’ in both cases. However, with

SPECIES+, we do capture the difference:

original: (E,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8)

tiled: (E,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈2|0|1|0, 0|2|0|1〉, 4|4|2|2)

1 f o r (i =0 ; i <8; i ++)
2 f o r (j =0 ; j <8; j ++)
3 E [i] [j] = 0 ;

4 f o r (i =0 ; i <8; i = i +2)
5 f o r (j =0 ; j <8; j = j +2)
6 f o r (i i =0 ; i i <2; i i ++)
7 f o r (j j =0 ; j j <2; j j ++)
8 E [i + i i] [j + j j] = 0 ;

Fig. 13. Example code (left hand side) and a tiled version (right hand side).

Additionally, we illustrate the characterisation of array ref-

erences at different loop levels and for individual statements.

In figure 14 we show the matrix-vector multiplication of

figure 1 again, but now with in-lined 6-tuple characterisations

at different levels. Note that the outer-most classification is

with respect to the i-loop only. Furthermore, note that because

the step S and repetition X take their (inner) dimensionality

from the number of loops considered, characterisations can

include the empty set (∅). The example shows that the theory

is not limited to loops, but can also be applied to individual

statements. Furthermore, it illustrates the isolation of the loop

body: although array r is read and written in the loop body,

it is classified from the outer-loop perspective as write only

because all reads to individual elements occur after writes.

Finally, we discuss a number of examples that illus-

trate the limitations of algorithmic species and the 6-tuple

SPECIES+ classification. First, let us consider the write access

to a triangular matrix F in lines 1-6 of figure 15. Because

1 / / Rr = (r, w, [0..31], 1, 1, 32)
2 / / RM = (M, r, 〈[0..31][0..63]〉, 〈1, 64〉, 〈1, 0〉, 32)
3 / / Rv = (v, r, [0..63], 1, 0, 32)
4 f o r (i =0 ; i <32; i ++) {
5 / / Rr = (r, w, [i..i], 1, ∅, ∅)
6 r [i] = 0 ;
7 / / Rr = (r, w, [i..i], 1, 0, 64)
8 / / Rr = (r, r, [i..i], 1, 0, 64)
9 / / RM = (M, r, 〈[i..i][0..63]〉, 〈1, 1〉, 〈0, 1〉, 64)

10 / / Rv = (v, r, [0..63], 1, 1, 64)
11 f o r (j =0 ; j <64; j ++) {
12 / / Rr = (r, w, [i..i], 1, ∅, ∅)
13 / / Rr = (r, r, [i..i], 1, ∅, ∅)
14 / / RM = (M, r, 〈[i..i][j..j]〉, 〈1, 1〉, 〈∅, ∅〉, ∅)
15 / / Rv = (v, r, [j..j], 1, ∅, ∅)
16 r [i] += M[i] [j]∗ v [j] ;
17 }
18 }

Fig. 14. Matrix-vector multiplication with per-statement characterisations
in-lined (lines starting with //), referring to the following loop or statement.

the j-loop’s bounds change every iteration of the i-loop,

we will have to characterise F as an over-approximation:

(F,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8). The exact iteration

domain can be described as a polyhedron, as is done in e.g. [5].

1 / / T r i a n g u l a r m a t r i x
2 f o r (i =0 ; i <8; i ++) {
3 f o r (j = i ; j <8; j ++) {
4 F [i] [j] = 0 ;
5 }
6 }

7 / / Random r e f e r e n c e s
8 f o r (i =0 ; i <8; i ++)
9 G[ra nd () %8] = 0 ;

10 / / F r a c t i o n a l i n d e x i n g
11 f o r (i =0 ; i <8; i ++)
12 H[(i +1) / 4] = 0 ;

Fig. 15. Additional examples of loop nests to illustrate the limitations.

As a second example, consider lines 7-9 of figure 15.

Here, we show a random reference independent of the it-

erator i to G. With our 6-tuple characterisation, we obtain

(G, w, [0..7], 8, 0, 8), as if we are referencing to the entire array

G every iteration. From the loop nest, we do know however

that we are referencing only one element per iteration.

As a final example, we show fractional indexing with an

offset in lines 10-12 of figure 15. Although we are able to

represent H[i/4] with a step of 1
4 , we are not able to

represent the offset in H[(i+1)/4]. As an extension, we

could allow the domain to include fractions for such non affine

cases. This would give us (H,w, [14 ..2], 1, 1
4 , 8).

VIII. RELATED WORK

We discuss related work in this section. We refer to [13]

for a comparison of the original algorithmic species with other

classifications such as skeletons and Berkeley’s dwarfs.

Related to our 5 or 6-tuple description is the theory of con-

vex array regions [5]. Array regions summarise the memory

accesses (reads and writes) performed by a function, a loop,

or one or more statements. For example, the elements that

are read during a set of statements s with memory state σ

for the complete example in figure 2 can be described as

R(s, σ) = {A[φ1]|2 ≤ φ1 ≤ 7}. Here, σ is not used. It is used

for example for describing the reads for the same example’s

loop body: R(s, σ) = {A[φ1]|φ1 = σ(i)}. Array regions are

described as a convex polyhedron and are thus abstractions of

program code, similar to our domain description D. In contrast

to our work, array regions do not describe the complete access

pattern, but merely capture our tuple’s name N , direction A,

and domain D. Array regions are used for example to perform

loop fusion and fission, dependence analysis, and data transfer

optimisations [10].

The Array-OL specification language [2] has similarities to

our 6-tuple representation. Array-OL models code at multiple

levels. First of all, there is a task level representing loop nests

as communicating tasks. An individual task is then repeated

according to Array-OL’s srepetition. At each repetition a task

accesses data by patterns. Each pattern is characterised by a

paving matrix (P), a fitting matrix (F) and a pattern shape

(spattern). Furthermore, Array-OL provides an origin vector

(o) and the array size (sarray). Array-OL’s srepetition and

P are closely related to our repetition factor X and step S
respectively. The patterns are abstracted in our representation

as the number of elements E . In contrast to our work, Array-

OL cannot be applied to non static affine loop nests and is not

as suitable for classification purposes.

We briefly describe other related classifications which work

on a different abstraction level. This includes the repre-

sentation of loop nests in the polyhedral model, such as

the representation used in the integer set library isl [16].

In isl, iterations of a loop nest are represented as integer

points in a polytope using first order logic. In other work,

polyhedral process networks [17] are introduced to provide a

higher-level polyhedral-based classification of program code.

Furthermore, the programming model Æcute [11] creates a

decoupled access/execute specifications of program code. The

language PENCIL [1] allows programmers or compilers to

create summary functions to describe array references. Finally,

the basic classification ‘idioms’ [3] provides a tool for auto-

matic extraction from program code.

Alternatively, classifications can be based on dynamic in-

formation. For example, [4] uses performance counters to

determine compiler optimisation settings. Although such work

is targeted at a very specific goal, performance counter features

can also be seen as a classification of code. In this way, classes

capture many detailed program code characteristics. However,

this also has drawbacks: manual or static extraction of classes

is not possible, classes are not intuitive, the classification is

architecture specific and classes are too fine-grained (e.g. not

all performance counters are relevant).

IX. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a new technique to classify

array references in loop nests as 5-tuple array reference char-

acterisations. We have shown that these characterisations (or

summaries) can be merged and transformed into algorithmic

species [13], an earlier classification of loop nests. In compar-

ison to the polyhedral-based algorithmic species theory, we

are no longer limited to static affine loop nests. Additionally,

we extended the theory to obtain the more detailed 6-tuple

SPECIES+ classification, potentially improving the current uses

of algorithmic species or enabling new uses. Furthermore, we

have introduced a tool to automatically classify program code.
With the new theory, tool and SPECIES+, we have set a

basis to address the challenges of programming, performance

prediction, and code generation for parallel processor archi-

tectures. Through compilers such as [14], our architecture-

agnostic classification can enable performance fine-tuning and

achieve (performance) portability.
As part of future work, we plan to investigate the possibili-

ties of loop fusion and fission at the level of species using the

new 6-tuple SPECIES+ characterisations. Moreover, inspired

by [5] and our merge operator, we plan to investigate the pos-

sibilities of describing other transformations or analysis passes

in the form of operations on the SPECIES+ classification.

REFERENCES

[1] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. Inoue, T. Grosser,
G. Kouveli, A. Kravets, A. Lokhmotov, C. Nugteren, F. Waters, and A. F.
Donaldson. PENCIL: Towards a Platform-Neutral Compute Intermediate
Language for DSLs. In WOLFHPC, 2012.

[2] P. Boulet. Array-OL Revisited, Multidimensional Intensive Signal
Processing Specification. Technical Report RR-6113, INRIA, 2007.

[3] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,
A. Snavely, and S. Poole. An Idiom-finding Tool for Increasing
Productivity of Accelerators. In ICS ’11: International Conference on

Supercomputing. ACM, 2011.
[4] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and

O. Temam. Rapidly Selecting Good Compiler Optimizations using
Performance Counters. In CGO ’07: Code Generation and Optimization.
IEEE, 2007.

[5] B. Creusillet and F. Irigoin. Exact versus Approximate Array Region
Analyses. In LCPC ’97: Languages and Compilers for Parallel Com-

puting. Springer, 1997.
[6] P. Custers. Algorithmic Species: Classifying Program Code for Parallel

Computing. Master’s thesis, Eindhoven University of Technology, 2012.
[7] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and

D. Burger. Dark Silicon and the End of Multicore Scaling. In ISCA ’11:

38th International Symposium on Computer Architecture. ACM, 2011.
[8] P. Feautrier. Dataflow Analysis of Array and Scalar References. Springer

International Journal of Parallel Programming, 20:23–53, 1991.
[9] S. H. Fuller and L. I. Millett. Computing Performance: Game Over or

Next Level? IEEE Computer, 44:31–38, 2011.
[10] S. Guelton, M. Amini, and B. Creusillet. Beyond Do Loops: Data

Transfer Generation with Convex Array Regions. In LCPC ’12:

Languages and Compilers for Parallel Computing. Springer, 2012.
[11] L. Howes, A. Lokhmotov, A. Donaldson, and P. Kelly. Deriving Efficient

Data Movement from Decoupled Access/Execute Specifications. In
HiPEAC ’09: High Performance Embedded Architectures and Compil-

ers. Springer, 2009.
[12] X. Kong, D. Klappholz, and K. Psarris. The I Test: An Improved

Dependence Test for Automatic Parallelization and Vectorization. IEEE

Trans. on Parallel and Distributed Systems, 2(3):342–349, 1991.
[13] C. Nugteren, P. Custers, and H. Corporaal. Algorithmic Species: An

Algorithm Classification of Affine Loop Nests for Parallel Programming.
ACM TACO: Transactions on Architecture and Code Optimisations,
9(4):Article 40, 2013.

[14] C. Nugteren, P. Custers, and H. Corporaal. Automatic Skeleton-Based
Compilation through Integration with an Algorithm Classification. In
APPT ’13: Advanced Parallel Processing Technology. Springer, 2013.

[15] W. Pugh. The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis. In Supercomputing. ACM, 1991.

[16] S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model.
In ICMS 2010: International Conference on Mathematical Software.
Springer, 2010.

[17] S. Verdoolaege. Polyhedral Process Networks. Handbook of Signal

Processing Systems, pages 931–965, 2010.
[18] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications

of the Obvious. SIGARCH Computer Arch. News, 23(1):20–24, 1995.

