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Chapter 1

Introduction

Graphical processing units are a hot topic in computer architecture design.
Section 1.1 shows why and provides a motivation for the selection of graph-
ical processing units as a subject in this work. However, programmers have
to spend a lot of effort to efficiently map algorithms on such an architecture.
Therefore, section 1.2 specifies the problem statement. This work adresses
the problem, after introducing the reader to the architecture and the in-
volved programming environment. A full overview of this work is outlined
in section 1.3.

1.1 Motivation

As todays graphical processing units (GPUs) provide a higher raw compu-
tational potential than traditional general purpose CPUs, using GPUs for
general purpose tasks becomes increasingly common [4]. In the past, GPUs
have been used mainly for the acceleration of 3D-games. However, in the
last few years, GPUs where used to provide hardware acceleration for high
definition video decoding [1] and for physics calculations within 3D-games
[9]. Adding to the popularity of GPUs for general purpose tasks is the in
2008 introduced hardware acceleration support for Adobe Photoshop [18]
and Mathworks’ Matlab [7], offloading computation tasks from the CPU.

GPUs are a typical example of the current shift within processor de-
sign. Traditional processor design was driven by frequency scaling, while
nowadays, a trend towards hardware multithreading and computationally
dense SIMD1 architectures can be observed [14]. In other words, the shift
replaces one complex high frequency processor by multiple simple parallel
processors. The GPU is an example of an architecture consisting of multi-
ple SIMD processors supporting hardware multithreading. High-end GPUs
typically outperform traditional CPUs by a factor of 50 when measuring in
raw computation power (FLOPS) [21].

1Single Instruction, Multiple Data
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2 CHAPTER 1. INTRODUCTION

1.2 Problem statement

Along with the trend towards parallel processors comes a programming
model shift. Sequential programming languages are replaced by parallel
programming languages that expose the programmer to SIMD-style paral-
lelism. For GPUs, NVIDIA introduced CUDA2 as a parallel programming
environment for general purpose applications. With CUDA, the program-
mer can exploit the parallel architecture of the GPU and accelerate general
purpose applications.

Although CUDA is specifically designed for general purpose GPU pro-
gramming, the mapping process of an algorithm onto a GPU remains non-
trivial. Although general purpose GPU programming has developed fast in
the last three years, the path to optimal hardware usage is still long. With
the current hardware and compilation flow, programmers have to spend
several weeks to reach a near-optimal hardware usage for their algorithms.
For a motion estimation algorithm, different mappings show different ad-
vantages and disadvantages. The programmer has to select an appropriate
mapping, depending on the nature of the algorithm. Then, a number of
algorithm specific and general optimizations have to applied, all resulting in
significant speed-ups.

With CUDA, parallelization of a sequential algorithm is performed quite
easily, although in order to achieve optimal hardware usage, the programmer
is required to have thorough knowledge of the hardware, the programming
language and the target architecture. Achieving optimal hardware usage
is non-trivial with different memories, caches and shared register files all
mappable by the programmer.

Although it is clear that GPUs provide a strong platform for algorithm
mapping, the burden on programmers to map their algorithms efficiently
onto the GPU is too high. Therefore, the objective of this work is to reduce
the burden on programmers, resulting in more hardware efficient mappings
and a shorter development time.

1.3 Thesis outline

This document is organized as follows. First of all, chapter 2 provides back-
ground information on the CUDA environment and the GPU hardware. The
chapter first introduces the concept of general purpose GPU programming.
Then, the reader is introduced to the thread model defined by the CUDA
environment, followed by an overview of the CUDA compilation flow. Also,
the hardware is introduced from both a processing and a memory perspec-
tive. Finally, the coupling between the CUDA environment and the GPU

2CUDA is an acronym for Compute Unified Device Architecture



1.3. THESIS OUTLINE 3

hardware is evaluated, in order to obtain insight in the mapping process of
an algorithm onto a GPU.

Then, motion estimation is chosen as an example general purpose ap-
plication and mapped onto the GPU. An example of motion estimation is
the block matching algorithm, which is introduced in chapter 3. This block
matching algorithm is mapped onto a GPU using two distinctive mappings,
which are then compared for scalability, ease of implementation and per-
formance. Concluding the chapter, benchmarks on two different GPUs are
presented.

Since a part of the CUDA compiler is not open-source and no speci-
fications are given, exact behaviour is unknown. This part of the CUDA
tool-chain is the compiler ptxas, translating from a virtual instruction set to
a GPU binary. The resulting GPU binary is unreadable. In chapter 4, the
GPU binary is decoded using a new tool, introduced in the same chapter.
This tool gives the programmer feedback by decoding and visualizing the
GPU binary produced by ptxas. Additionally, the tool can also be used to
understand the behaviour of ptxas.

As the tool from chapter 4 can be used to understand ptxas’ behaviour,
it can be used to propose improvements to the compiler. In chapter 5, a
number of improvements are presented and discussed. Among these im-
provements are non-linear register allocation, improved value recalculation,
instruction re-ordering, register spilling to shared memory and redundant
instruction removal. Also using the tool from chapter 4, two weak points
are found in the hardware, which are presented in chapter 6.

Finally, in chapter 7, conclusions on the research on ptxas’ behaviour for
CUDA will be presented, along with further work and a summary.
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Chapter 2

Background

As the reader might have no or partial knowledge of GPU architectures and
the CUDA programming environment, background information on CUDA
as well as on the corresponding hardware is provided. Before introducing
the hardware or the programming environment, a brief history along with a
general introduction is provided in section 2.1, serving as an introduction to
general purpose GPU programming. To program GPUs for general purpose
applications, the CUDA environment is used. This environment consists of
among others a thread model - introduced in section 2.2 - and a compilation
flow consisting of several tools, which is introduced in section 2.3. To be able
to understand design choices, programming behaviour and flaws found while
using the CUDA environment, a GPU architecture is introduced. Section
2.4 shows both the different processing elements and the different memory
elements of a G80 GPU. Finally, section 2.5 shows the relation between the
CUDA environment and the introduced hardware.

2.1 The GPU as a general purpose processor

The last few years show an increase of interest in general purpose GPU pro-
gramming. Since the introduction of the term, general purpose GPU pro-
gramming has exponentially increased. Now, with GPU vendors introducing
dedicated hardware for general purpose GPU programming, the interest has
not stopped growing. To give an introduction to the concept of using a GPU
as a general purpose processor, a brief history of GPU architectures is given
in section 2.1.1, followed by the concepts of general purpose GPU program-
ming in section 2.1.2. This section shows the most important techniques to
perform general purpose GPU programming, along with their properties.

5



6 CHAPTER 2. BACKGROUND

2.1.1 A brief history of GPU architectures

The modern 3D graphics processing unit (GPU) architecture as it exists
nowadays evolved from a fixed-function graphics pipeline in 1999 into a
programmable parallel processor. Programmability of GPUs started emerg-
ing around 2001 with the introduction of programmable vertex processors
[14]. Later, the addition of programmable pixel processors added to the
programmability of GPUs. Because of the need for increasing processing
power in 3D-games, GPU vendors added an increasing number of vertex
and pixel processors onto their GPUs. A unified programmable processor
was developed [14], containing processors suitable for both vertex and pixel
operations. The shift towards programmable GPUs was motivated by the
unbalanced ratio between vertex and pixel operations in 3D-scenes. Al-
though dedicated vertex or pixel processors are more efficient and faster
individually, a GPU using a programmable processor was shown to be more
efficient and faster due to the dynamic ratio of vertex and pixel processors,
yielding an ideal ratio depending on the 3D-scene to be rendered.

2.1.2 An introduction to GPGPU programming

The introduction of GPUs using a unified processor architecture denoted
the start of general purpose GPU (GPGPU) programming. Since the new
GPU architectures come with a high grade of programmability, the GPU is
now suitable for a wide range of applications, denoted as general purpose
- non 3D-rendering - applications. Among these applications are computer
vision, signal processing, finance, physics and streaming media [17].

Although GPGPU programming attempts were made prior to the unifi-
cation of the GPU architecture, they were not successful. Due to the lack
of a proper GPGPU programming language, OpenGL was used. OpenGL
is a graphics rendering API, used for 3D-rendering. Although OpenGL
gave access to the GPU, it required from the programmer large amounts of
effort and knowledge to effectively program the GPU [15]. In order to over-
come these problems, NVIDIA - as the first hardware vendor - altered their
GPU design to make room for flexible and programmer friendly GPGPU
programming. Since GPUs are particularly suited for parallel processing
applications, GPGPU programming only benefits from data-intensive appli-
cations, while traditional CPUs are more suited for applications consisting of
high control-intensive algorithms. Therefore, in GPGPU programming, the
GPU and the CPU are required to work together, dividing an application
for an efficient use of both devices.

The GPGPU programming language released by NVIDIA is part of the
CUDA environment. It consists, apart from the programming language C
for CUDA, of a toolset, a thread model and special GPGPU hardware. The
CUDA programming language allows the programmer to specify which part
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of the algorithm should be executed on the host - the CPU - and which part
on the device - the GPU. Programmers can order data transfers from host
memory to device memory and vice versa.

NVIDIA’s direct competitor ATI followed with their own GPGPU pro-
gramming language Close To Metal, which was succeeded by StreamSDK.
Since both NVIDIA and ATI introduced their own environment, the Khronos
group - holder of the OpenGL specification - started working on an open
GPGPU programming language, suitable for all vendors’ GPUs. In the be-
ginning of 2009, the Khronos group released their OpenCL1 specification,
meant to unify GPGPU programming in one open-source language [16]. As
of now, OpenCL lacks programmer support, but it may grow in the future
with Apple integrating OpenCL in their newest operating system, due for
release mid 2009 [16]. In this work, CUDA is chosen as a GPGPU program-
ming environment, since it is the most widely used and best documented
environment.

2.2 The CUDA thread model

The CUDA environment consists of a thread model, introduced in order to
ensure that the hardware can benefit from its multi-threaded possibilities,
allowing the programmer to parallelize sequential code. An overview of the
thread model can be seen in figure 2.1 and is defined as follows:

kernel A kernel is a small program which is typically executed a large num-
ber of times on different data - also known as SPMD (single program,
multiple data) [14]. In CUDA, the kernel is executed on the device,
on which only one kernel can be active at any given time.

thread A thread is an instance of a kernel. In CUDA, the number of threads
one kernel instances can be tens to hundreds of thousands.

threadblock Each thread belongs to a threadblock. Within one thread-
block, threads can synchronize with each other using a barrier. Also,
within one threadblock, one piece of shared memory can be used among
all the threads it consists of for data re-use or communication between
threads [14].

grid Each threadblock belongs to a grid. Together, all threadblocks in
a grid form the complete execution of a kernel. Within a grid, no
communication or synchronisation is possible, except within individual
threadblocks [14].

1OpenCL is an acronym for Open Computing Language
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Figure 2.1: The CUDA thread model: an example layout

In figure 2.1, threadblocks and threads are both organised in a two-
dimensional way inside their grid and threadblock respectively. Thread-
blocks and threads can also be organised in a one- or three-dimensional way,
reflecting the data structure of the application. Within the CUDA program-
ming language, the programmer can specify the layout and the number of
threads and threadblocks.

Threads can be characterised as programs that fetch their instructions
from the same binary, but can take distinct control paths depending on iden-
tifiers which are pre-set and stored in special registers [14]. These identifiers
hold different values for each thread and correspond to both the coordinates
of a thread in their threadblock and the coordinates of their threadblock in
the grid. The formation of the threads and the mapping on the hardware is
discussed in section 2.5.

2.3 The CUDA compilation flow

This section introduces the CUDA compilation flow along with its two pro-
prietary compilers. First, before compilation, code is split up into a device
part and a host part by a front-end called cudafe. The device part - the
kernel - is ran through nvcc, compiling high level code into a virtual in-
struction set - the PTX2 intermediate format. The resulting PTX code is
ran through the second compiler, ptxas, which produces a GPU binary [20].
Since the host part is executed on the CPU, a standard C compiler is used.

2PTX is an acronym for Parallel Thread eXecution
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The compilation flow is shown in figure 2.2.

Host

gcc

CPU binary

C for CUDA
host file

Device

nvcc

PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

Figure 2.2: A simplified compilation flow

Please note that the compilation flow in figure 2.2 is an abstraction of
the actual (more complicated) compilation flow. For the research purposes
of this work, the abstraction of the compilation flow provides sufficient in-
formation. Research is focussed on the trajectory from CUDA code through
nvcc and ptxas, resulting in a GPU binary. The two different compilers
involved are:

nvcc The compiler nvcc, based on the open-source compiler Open64, per-
forms the largest part of the compilation. It should be noted that
newer GPUs introduce slightly different hardware specifications and
a slightly different instruction set. Therefore, the intermediate PTX
code that nvcc produces is chosen to be hardware independent, still
being able to run on any CUDA enabled GPU [20]. Because of the
introduced hardware independency, several compiler tasks are not per-
formed by nvcc. Thus, PTX code can be seen as a virtual instruction
set, targeting current and future hardware architectures. PTX is com-
pletely specified by NVIDIA [19].

ptxas The second compiler performs hardware specific compilation. As of
2009, four different hardware specifications exist [19]. The compiler
can compile a GPU binary for any of these target specifications. In the
case that a different hardware architecture is used, ptxas can also be
executed at run-time as a just-in-time compiler. To be able to do so,
a compiled program by ptxas includes PTX code in case of a change
of the target hardware architecture [14].

Among the tasks of ptxas are register allocation and instruction re-
ordering. Since PTX code assumes an infinite number of registers
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available and the number of available registers can change with differ-
ent architectures, ptxas needs to perform register allocation. In order
to perform register allocation, ptxas can also perform instruction re-
ordering.

2.4 G80’s hardware architecture

In order to introduce the reader to the hardware architecture, a short overview
of the layout of both memories (in section 2.4.2) and processing elements
(in section 2.4.1) is presented. As a reference, the G80 layout is taken. This
architecture is found on GPU boards from the GeForce 8 series as well as
various Quadro and Tesla based boards [17]. Newer CUDA-enabled GPUs
have a comparable layout, but have different specifications, such as memory
sizes, number of processing elements and so on.

2.4.1 G80’s processor hierarchy

First, the architecture is presented from a processing point of view. The
device contains a number of texture processor clusters (TPC), ranging in
the order from one (for entry-level hardware) up until sixteen (for the cur-
rent high-end hardware) [17]. In G80 architecture, each TPC contains two
streaming multiprocessors (SM), which in turn each contain eight processing
elements (PE) and two special function units (SFU) [14]. A visualization3

is shown in figure 2.3.

device
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SM

host

PE PE

PE PE

PE PE

PE PE

SFU SFU

SM

PE PE

PE PE

PE PE

PE PE

SFU SFU

TPC

SM

PE PE

PE PE

PE PE

PE PE

SFU SFU

SM

PE PE

PE PE

PE PE

PE PE

SFU SFU

Figure 2.3: Processor hierarchy

3Please note that this visualization is an abstraction of the actual hardware, in this
case featuring four SMs



2.4. G80’S HARDWARE ARCHITECTURE 11

An SM can be seen as an SIMD processor, containing PEs and SFUs -
the main computation units for CUDA. PEs consist of scalar multiply-add
(MAD) units, while the SFUs are used for transcendental functions, but also
contain four floating-point multipliers each [14]. Apart from the processing
elements seen in figure 2.3, the G80 architecture contains fixed-function
logic specific for the graphics pipeline, such as a geometry controller and a
raster operation processor. These processors are not used by CUDA and are
therefore not shown in figure 2.3.

2.4.2 G80’s memory hierarchy

From a memory point of view, each TPC contains a texture cache. Within
each TPC, the two SMs each contain a register file, a shared memory and
a constant cache. A visualization4 is shown in figure 2.4, together with the
off-chip memory.

device

TPC

SM

Off-chip GDDR memory

SM

TPC

SM SM

Register 
file

Shared 
memory

Constant 
cache

Register 
file

Shared 
memory

Constant 
cache

Register 
file

Shared 
memory

Constant 
cache

Register 
file

Shared 
memory

Constant 
cache

Texture cache Texture cache

Figure 2.4: Memory hierarchy

In CUDA, these memories are divided into different parts, each with
their own specific CUDA name. Firstly, the off-chip memory contains the
global memory, the texture memory and the constant memory. From an SM
point of view, the global and texture memories support reads and writes,
while the constant memory only supports reads. Secondly, the cache is
divided into a texture cache - corresponding with the texture memory - and
a constant cache - corresponding with the constant memory. These caches
are read-only from an SM point of view. The caching is transparant for

4The G80 consists of other memory elements, but are left out for simplification reasons



12 CHAPTER 2. BACKGROUND

programmers. Lastly, the shared memory supports reads and writes, as
does the register file.

An overview of the scope, the typical size and an estimate of the access
latency5 is presented in the table 2.1.

CUDA name Scope Location Typical size Access latency

Register file Thread SM 8K entries register speed
Shared memory Threadblock SM 16KB register speed
Constant cache Program SM 8KB register speed
Texture cache Program TPC 16KB register speed

Global memory Program Off-chip 0-1GB 200-600 clock cycles
Texture memory Program Off-chip 0-1GB 200-600 clock cycles
Constant memory Program Off-chip 64KB 200-600 clock cycles

Table 2.1: Overview of the different memories

2.5 Mapping threads onto multiprocessors

Now that the thread model and the hardware are discussed, it is time to
understand how they cooperate. In other words: how are threadblocks
and threads mapped onto the different processing elements of the GPU? To
answer this question, the concept warp is introduced. A warp is defined by
NVIDIA as a group of at most 32 threads, which start together at the same
program address but are otherwise free to branch and execute independently
[21].

On execution of a kernel, a warp is started onto a streaming multipro-
cessor. Because a warp typically contains 32 threads and a multiprocessor
contains 8 processing elements, it will take 4 clock cycles to execute the first
instruction6 of each thread within the warp [13]. Then, the first instruction
of the second warp is executed, taking another 4 clock cycles. When all
warps finished their first instruction, the first warp starts executing the sec-
ond instruction. This process goes on until a load instruction is encountered
that needs to wait for the off-chip memory. At this point, the multiprocessor
does not schedule this warp anymore. When a warp receives its data from
the off-chip memory, it is enabled for scheduling again. In the case that all
warps are waiting for memory transfers, the multiprocessor is idle.

Besides scheduling in groups of warps, the thread model from section
2.2 also introduces constraints on the scheduling possibilities. As mentioned
before, threadblocks can synchronize and use a shared memory. Therefore,

5The speed depends on various factors, such as the bus usage
6The throughput is one warp per 4 cycles, the latency is higher due to a multiple stage

pipeline
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one entire threadblock must be scheduled onto one streaming multiprocessor.
The number of threadblocks that fit onto one multiprocessor depends on
several factors:

• Firstly, the register file has to be shared among all threads in all thread-
blocks that are scheduled onto the multiprocessor. In G80 hardware,
the register file contains 8192 entries. Depending on the number of
registers needed per thread, a maximum amount of threadblocks can
be scheduled on an SM.

• Secondly, the shared memory needs to be shared among a threadblock.
This shared memory should however be divided over the number of
threadblocks active on the SM. Depending on the shared memory
usage of a threadblock, a maximum amount of threadblocks can be
scheduled on an SM.

• Lastly, there are hardware limits of a maximum of 768 threads or
8 threadblocks per SM. If the previously mentioned limits are not
met, either 768 threads or 8 threadblocks will be scheduled on an SM,
depending on which limit is reached first.

A group of warps sharing one set of shared memory and synchroniz-
ing using barriers is called a concurrent thread array (CTA). Warps inside a
CTA are assumed to execute in parallel, apart from synchronization barriers
set by programmers [6]. The reader might notice that a CTA has the same
properties as a threadblock - synchronization and shared memory require-
ments - and can therefore be stated as equal. The concept of a threadblock is
seen from a programmers perspective, while a CTA is seen from a hardware
perspective. Otherwise, the concepts are the same. Therefore, one group of
warps in a CTA has to be executed onto one multiprocessor. An overview
of warps and CTAs can be found in figure 2.5, which is comparable to figure
2.1.

From all the above mentioned concepts and models, it is important to
realize the impact of the chosen number of threads and threadblocks. First
of all, the number of threads inside a threadblock should at least be 32 for a
warp to be completely filled and all processing elements to be used. Secondly,
a threadblock has preferably a size dividable by 32, so that no semi-filled
warps have to be formed. But lastly - the most important - the number of
threads should be as big as possible. Because the G80 hardware and the
CUDA environment are designed to switch to another warp whenever a warp
has to wait for memory access, memory request times can be completely or
partially hidden - if enough warps are available to switch to. The memory
operation intensity together with the computation intensity can decide a
sufficient amount of warps to ensure completely hidden memory request
times, which can be analytically computed [13]. However, increasing the
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Figure 2.5: Warps and CTAs

number of warps - and thus threads - will always help to hide this latency,
independent of the structure of the program.

GPUs are a typical example of many-thread architectures. Although
the G80 architecture implements a texture cache, it is not big enough for
most applications to hide their memory latencies [10]. Instead - to hide
memory latencies - a high number of threads is scheduled onto the hardware.
Apart from many-thread architectures such as the GPU, a second type of
multiprocessor architecture exists: a many-core architecture [10]. Many-core
architectures exploit large caches to minimize off-chip memory latencies, in
contrary to the scheduling of many threads. An example of such a many-core
architecture is Intel’s Larrabee [22].



Chapter 3

Motion estimation on a GPU

In order to evaluate the mapping and optimization process a CUDA pro-
grammer experiences, a non-trivial algorithm is mapped onto the GPU. To
do so, a motion estimation algorithm is chosen as an example application. To
completely understand the results, knowledge of the algorithm is required.
Therefore, section 3.1 introduces an algorithm to perform motion estimation,
known as the block matching algorithm. This block matching algorithm is
mapped onto the GPU using two different mappings. The mappings are then
compared for scalability, ease of implementation and performance. The two
different mappings are introduced and discussed in section 3.2. For each
of these mappings, several general optimization steps can be taken, which
are given in section 3.3. The results from both mappings and optimizations
are shown through benchmarks in section 3.4, concluding the mapping and
optimization process experiences.

3.1 The block matching algorithm

Motion estimation is a technique to improve the perceived quality of video
streams. The technique is used in the video compression standards such as
MPEG-4 (consisting among others of DivX, H.264 and Blu-ray) and MPEG-
2. With motion estimation, a new video frame is calculated based on the
motion information available in two subsequent target frames. This pro-
cess results in a higher frame-rate, resulting in a better viewer experience.
One technique to implement motion estimation is block matching [5]. This
section introduces the algorithm.

For block matching, the two source frames are divided into small blocks,
with typical values of 8 times 8 or 16 times 16 pixels. Then, for each block in
the first frame, the algorithm searches for a similar block in the second frame.
Lastly, the block from the original frame is set in the new intermediate frame
at a position in between the matched blocks of the two target frames. This
way, motion is interpolated by means of a matching process between two

15
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blocks. In more detail, three different steps can be distinguished for each
block - called the reference block:

1. First of all, the reference block from the first frame must be compared
with a number of candidate blocks from the second frame. Typically,
this is done within a window, limiting the number of comparisons. For
example, within a window of 32 times 32 pixels a total of 256 different
16 times 16 blocks must be compared. The comparison itself is done
using a sum of absolute difference (SAD) technique1, which will be
introduced in this section.

2. The result of the comparisons denotes the similarity to the reference
block. All obtained results need to be sorted and the best candidate
needs to be found - the winning block. In the case of a SAD compari-
son, the candidate with the lowest SAD value is the winning block.

3. Finally, the motion vector can be calculated and, with it, the resulting
intermediate frame.

The calculation of the SAD value between a reference and a candidate
block is performed as follows. For every pixel in the reference block, the
value of the corresponding pixel2 in the candidate block is subtracted from
it. Then, the absolute value is taken. In other words: the absolute difference
is taken between two pixel values. Lastly, all these absolute differences are
summed up, to obtain the sum of absolute difference (SAD) value of a block.
The SAD value can be seen as an error value - if the SAD value equals zero,
the blocks are exactly the same.

Search window

Reference

First frame

Second frame

Intermediate frame

Search window

Result Search window

Candidate

Figure 3.1: Motion estimation using block matching

1Other techniques are less used, but exist, such as mean squared error (MSE) or nor-
malized cross-correlation function (NCCF) [5]

2In this case, a pixel is represented by its luminance value [5]



3.2. COMPARING TWO DIFFERENT MAPPINGS 17

In figure 3.1, the block matching algorithm is depicted. In the first
frame, a reference block and a search window are chosen. Then, the second
frame - the rightmost in the figure - compares different candidates within
the window. In the end, a winning block is chosen and a new block is set in
the intermediate frame, as seen in the middle of figure 3.1.

Different variants of the block matching algorithm exist, reducing the
number of arithmetic operations, but adding control operations [5]. Vari-
ants of the explained full-search are among others cross-search, spiral-search
and N-step-search [5]. In this work, full-search is chosen, as it contains the
smallest amount of control. The reason to choose an algorithm with the
smallest amount of control is twofold. Firstly, the algorithm is less com-
plicated, which makes it more suitable as an example algorithm. Secondly,
algorithms with no or a small control structure map more efficiently on a
GPU. The reader should keep in mind that any CPU implementation would
perform significantly better using an alternative implementation, but for
comparability reasons, full-search is used in both the GPU and the CPU
implementations.

3.2 Comparing two different mappings

Because the mapping process of the block matching algorithm onto a GPU
is not trivial, two different mapping approaches are considered. First, in
section 3.2.1, the most intuitive - one kernel - approach is taken. But, as
seen in section 3.1, the algorithm is dividable in three separate steps. Each
step is then mapped onto the hardware as an individual kernel, resulting in
the second approach, shown in 3.2.2.

3.2.1 The first mapping approach

The first mapping approach uses one kernel. As described in section 2.2,
a division into threadblocks and threads has to be made. However, this
division is not trivial and has an impact on performance, as threads within
threadblocks can share a fast local memory and use a synchronization bar-
rier. A mapping as depicted in figure 3.2 is chosen, which is explained and
justified in this section.

First, the complete frame is divided into blocks with a size equal to the
chosen reference block size, for example 16 times 16 pixels. These blocks
are mapped 1 on 1 onto threadblocks. So, the number of threadblocks is
equal to the number of reference blocks in the image. For a sample 720p3

image, this division is depicted in figure 3.2. Since each threadblock now
represents all the processing involved with one reference block, the details

31280 times 720 pixels
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for each reference block can be described according to the three steps from
section 3.1:

1. First, the reference block needs to be compared with each candidate
block in the second frame. In order to do so, a number of threads is
instantiated within the threadblock, equal to the number of candidate
blocks available. The task of each thread is to calculate one SAD
value, i.e., to compare one candidate block with the reference block.

2. After the first step is complete, the winning candidate needs to be
found. The result of the previous step consists of a number of SAD
values, equal to the number of threads in the threadblock. In order to
find the winning candidate, the smallest SAD value needs to be found.
This involves a comparison between all SAD values, which can be
efficiently parallelized using an inverse tree structure, which is known
as parallel reduction [11]. As the number of comparisons to be made at
the start of the reduction is half the number of candidate blocks, half of
the threads are completely idle during the whole operation, while other
threads are partially idle due to the organization of parallel reduction.

3. When the winning candidate is known, pixels can be written to the
intermediate frame. Ideally, one thread should write one pixel - the
more threads, the better the latency is hidden. Because the number of
threads in a threadblock cannot change within one kernel, it is equal
to the number of candidate blocks and not to the number of pixels
in a reference block. With smart search window and reference block
size choices, this might lead to the ideal case, in which each thread can
write one pixel. However, if one of the two parameters is set differently,
threads have to write zero pixels or more than one pixel, depending on
the parameters. If the parameters are unknown during design time,
this fact will add a significant control overhead.

In pseudo-code, the complete algorithm as described and seen in figure 3.2
can be summarized as seen in listing 3.1.

As discussed before, within a threadblock, a fast shared memory is avail-
able. For the SAD comparison the reference block is used for every thread,
while the candidate blocks are partially overlapping each other. A typical
reference block can fit easily in the shared memory, leaving space to sched-
ule other threadblocks with their reference blocks onto the same SM. In
this way, the reference block is stored once in fast local memory and can
be shared among each thread. In order to do so, each thread loads zero or
more pixels from the reference block into the shared memory. Because the
number of threads can differ from the number of pixels in a reference block
due to parameters for the algorithm, control has to be added in the case of
unfixed parameters at design time.
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720p image == kernel == grid with threadblocks
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Figure 3.2: The first mapping approach

Listing 3.1: The first mapping in pseudo-code

for a l l threadblocks

for a l l threads

SADresults = SAD( r e f e r enceB lo ck , candidateBlock )
end

winningBlock = pa r a l l e lReduc t i on ( SADresults )
for a l l threads

writeData ( winningBlock )
end

end

In the second step of the block matching algorithm, the shared memory
is used again, this time to communicate all the resulting SAD values and to
do the comparisons. Apart from the shared memory, grouping threads into
threadblocks makes synchronization between threads possible. As seen from
the algorithm, between each of the three steps a synchronization barrier is
needed, since the algorithm must completely finish each step before being
able to proceed to the next step.

The presented mapping approach has some drawbacks. Because the ker-
nel contains three non-trivial steps, the kernel is relatively big. The CUDA
programming guide suggests to use a lot small threads rather than a few
bigger threads [21]. Although a single thread is quite big, the threadblock-
size could still reach 256 (for typical block matching parameters) and the
number of threadblocks could well go over 10000. Apart from the relatively
large kernel, the mapping has several other drawbacks: it introduces de-
pendencies between the hardware mapping constraints and the algorithm
parameters:

• The number of threads within a threadblock is equal to the number of
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candidate blocks - which is related to the window size. So a different
window size selection leads to different performance characteristics.
It can even lead to unsolvable constraints, as the maximum number
of threads within a threadblock equals 512 and a typical window size
already yields 256 threads.

• The size of a reference block is a parameter for the algorithm. How-
ever, a large reference block implies a lot of work per thread, whereas
a smaller reference block will lead to smaller threads, which effects
performance. For example, if the reference block is chosen to be very
small, it makes no sense to load all the pixels of a reference block
in the shared memory. The amount of control to divide this over all
threads outweighs the gain of data re-using. The other way around
shows that, if the reference block is very big, it consumes a lot of space
in the shared memory, reducing the amount of threadblocks onto an
SM to one or even to zero.

3.2.2 The second mapping approach

The second mapping approach is designed to reduce the size of the big kernel
found in the first mapping. Using a smaller kernel means instantiating more
threads - as the same amount of computation needs to be done - better hiding
memory access latencies, as explained in section 2.5. A smaller kernel implies
smaller threads - using fewer resources (registers and shared memory) -
which enables the scheduler to allow more threads onto a single SM.

In the first mapping approach, only one kernel exists, which is executed
once. This kernel then instantiates threadblocks containing the individual
threads. The second approach however, introduces three kernels, each of
them executed a large number of times. It splits the complete image in
different reference blocks, analogue to the first approach, but now assigns
the execution of three kernels to each reference block. This is best seen in
figure 3.3 and the following pseudo-code listing:

for a l l r e f e r en c eB l o ck s
ke rne l 1 ( )
ke rne l 2 ( )
ke rne l 3 ( )

end

The reader should note that after the execution of any kernel, all regis-
ters and shared memories are reset, so no communication is possible between
different kernels, except through the off-chip memory. Also, kernels are guar-
anteed to execute in order, so the above pseudo-code listing is sequentially
executed. It constraints the execution order to kernel1, kernel2, kernel3
for each reference block individually, completing a reference block before
starting another. The mapping specified in section 3.2.1 parallelizes the
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720p image == grid with series of 3 kernel executions
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Figure 3.3: The second mapping approach

algorithm at the level of the reference blocks, introducing a possible out-of-
order processing of reference blocks. The second mapping approach differs
from this: parallelism is exploited within the processing involved of an in-
dividual reference block, with the mapping of reference blocks performed
sequentially. Each step from section 3.1 now reflects one kernel:

kernel1 The first kernel calculates the SAD values for all candidate blocks.
In contrast to the first approach, the calculation of the SAD values
can now be divided into threadblocks instead of threads. Now, each
SAD value is calculated by one threadblock, which is divided into
threads according to the number of pixels in a candidate block. Each
thread has a light task, calculating one absolute difference (AD) value
between the reference block and its candidate block. When all threads
calculated their AD value, the sum must be taken to obtain the SAD
value. This is done using parallel reduction. The tasks of the first
kernel are:

# Star t o f ke rne l1
for a l l threadBlocks

for a l l threads

AD( re f e r enceB lo ck , candidateBlock )
end

SAD = pa r a l l e lReduc t i on ( ADresults )
end

kernel2 The second kernel identifies the winning block, implemented using
parallel reduction. Because parallel reduction does not benefit from
more threads than half the number of SAD values, only one thread-
block is used. The number of threads in the threadblock is limited -
equal to half the number of threadblocks in the first kernel. The task
of the second kernel in pseudo-code is:
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# Star t o f ke rne l2 ( one t h r eadb l o c k )
winningBlock = pa r a l l e lReduc t i on ( SADresults )

kernel3 The third kernel also consists of one threadblock, with a number
of threads equal to the pixels in a reference block. Each thread writes
one value to the resulting intermediate frame:

# Star t o f ke rne l3 ( one t h r eadb l o c k )
for a l l threads

writeData ( winningBlock )
end

The design of the three different kernels is depicted in figure 3.4. Because
no fast communication is possible between any kernel, the SAD values re-
sulting from the first kernel must be passed on to the second kernel through
the off-chip memory. Then, the identification of the winning block calcu-
lated by the second kernel must be passed through the off-chip memory to
be available for the last kernel.
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Figure 3.4: The second mapping approach’s kernels

Although the mapping introduces additional memory accesses, a second
parallel reduction and does not exploit parallelism at image-level, the map-
ping could still be competing with the first mapping, because of the use of
smaller threads. The performance of the second mapping differs from the
first mapping, mainly due to the following:

• Although the total number of threads is much higher than in the first
mapping, the number of threads instantiated by a kernel in the second
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mapping is comparable to the number of total threads instantiated
in the first mapping. Since every execution of a kernel needs to be
performed sequentially, the number of threads available at any time
for scheduling is in the same order of magnitude in both approaches.

• In between the kernels of the second mapping, the off-chip memory
is used to transfer the results from one kernel to another, which is
not necessary in the first mapping. Additional memory accesses are
necessary for the second mapping approach.

• The kernels in the second approach are smaller, allowing for more
kernels to be scheduled onto an SM. This results in a larger pool of
available warps, making room for better memory latency hiding.

• The second and the third kernel consist of only one threadblock each.
This implies that, during the execution of these kernels, only one
threadblock can be scheduled onto one SM. Depending on the speci-
fications of the GPU, a number of SMs will always be idle. Even the
SM that does perform work has a limited number of threads available
for scheduling, possibly resulting in incomplete memory access hiding.

• The second mapping does not imply any data re-use within a thread-
block, and is thus not able to benefit from the shared memory as the
first mapping does.

• Both mappings introduce dependencies between the hardware map-
ping constraints and the algorithm parameters, but the dependencies
are different. The second mapping approach implies that the num-
ber of pixels inside a reference block cannot be bigger than 512, but
does not introduce dependencies for the amount of threadblocks or the
window size.

3.3 Describing optimization steps

The mapping process of a sequential algorithm such as block matching onto
a GPU does not exclusively involve the mapping of kernels, threadblocks and
threads. Along with these mappings, mapping includes choices of memories,
usage of special functions, accessing patterns for memories, restructuring of
the algorithm and others. In this section, the most important improvements
to the algorithm are briefly introduced:

Grouping pixels Typical RGB or YUV pixel values are represented by
8-bit values [5]. Since the hardware architecture works with 32-bit
integers or floats, four pixel values can be grouped together into one
32-bit word. Using grouping, one memory read equals four pixel reads,
stored in one register or shared memory place. This can save memory,
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reduce memory loads, and does not introduces additional instructions,
as vector datatypes are available within CUDA. Still, there is a draw-
back. Because each read now implies reading four pixel values, threads
will have four times as much computational work to perform, reducing
the total amount of threads.

Using the texture cache To use the texture cache, the image data needs
to be binded to a texture. This process does not change the location
of the data - it remains off-chip - but it changes name-wise from global
memory to texture memory (see section 2.4.2). Then, for reads only,
the texture cache will cache loaded data. Section 2.5 explains that in
a typical case threads keep switching context. In most cases - as in
the case of block matching - data re-use exists within threadblocks,
but the benefit is minimal or non-existent as thousands of threads
are executed in a TPC, all overwriting the 16KB of cache. Still, the
texture cache is used, because it does not have any drawbacks. In a
worst-case scenario, the algorithm will perform equally fast with or
without caching.

Hardware specific functions The instruction set contains special instruc-
tions which would otherwise take multiple regular instructions. An ex-
ample of this is the SAD function, which is implemented on the hard-
ware as one arithmetic instruction with four operands (the result, the
cumulative sum and the two target values) [19]. Using regular instruc-
tions, the SAD operation requires one add instruction (subtracting the
two target values), one compare instruction (implementing the abso-
lute value function) and two conditional add instructions (one adding
and one subtracting the difference to the sum). Although the hard-
ware SAD function reduces the number of instructions by a factor 4
for the part of the kernel containing SAD calculations, the speed-up
cannot be calculated in this way, as instruction count may not be the
bottleneck.

Using shared memory Since the shared memory can be accessed at reg-
ister access speed, the shared memory can be exploited in different
ways. As mentioned in section 3.2.1, the shared memory can be use-
ful when data is re-used within threads in a threadblock. Also, the
shared memory can be used (together with a synchronization barrier)
to communicate data over threads, as is done for parallel reduction.
Apart from this, complex calculations that yield the same result within
a threadblock can be performed once and communicated through the
shared memory. Finally, the shared memory can be used as an exten-
sion to the register file, providing more storage space.

Reducing control The sequential block matching algorithm contains con-
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trol to minimize the amount of calculations needed. More advanced
block matching algorithms, as described in section 3.1, introduce even
more control, minimizing the amount of calculations. However, addi-
tional control can lead to worse performance on a GPU, as divergence
within a warp can lead to the execution of both branches, not reducing
the amount of calculations. In general, the more control is omitted,
the faster a kernel executes [8]. Therefore, replacing control struc-
tures from the sequential algorithm with computations in the parallel
algorithm, can improve performance in most cases.

Coalescing memory access The order in which the off-chip memory is
accessed can be coalesced or not. Consider the case of threads access-
ing 4-byte data elements from an array located in the off-chip memory.
If the index for the array increases by 4 whenever the thread ID in-
creases by one, the memory accesses are coalesced and are handled
efficiently by hardware, with a typical increase in performance of an
order of magnitude over a non-coalesced memory access pattern [12].

3.4 Benchmarking the block matching algorithm

The performance4 of the block matching algorithm mapped on a GPU is
measured in different stages. First, a naive sequential implementation of
the algorithm is executed on a 2009 mid-range CPU5. Then, both mappings
from sections 3.2.1 and 3.2.2 are executed on a GPU in different stages of the
optimization process. The optimization steps from section 3.3 are divided
into three different stages:

Stage 1: Consists of a naive implementation extended with the usage of the
texture cache, reduced control, the grouping of pixels and the usage
of shared memory.

Stage 2: Stage 1 extended with the usage of additional shared memory and
hardware specific functions.

Stage 3: The previous stage extended with coalesced memory access.

The results of the mentioned different stages for the two mappings com-
bined with a naive CPU implementation are shown in table 3.1. Both the
mean execution time and the speed-up6 are shown, running on a G80 archi-
tecture with 16 PEs clocked at 800MHz. This GPU is commercially available
as the GeForce 9400M and is positioned in 2008 as a low-power entry-level
GPU.

4The algorithm is executed on a 720p image with a threadblock-size of 256
5Intel Core 2 Duo running at 2GHz
6Speed-up is compared to the CPU implementation
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Platform and mapping Optimization Execution time Speed-up

CPU Naive 3.00s 1.0
GPU mapping 1 Stage 1 1.43s 2.1
GPU mapping 1 Stage 2 0.66s 4.5
GPU mapping 1 Stage 3 0.37s 8.1
GPU mapping 2 Stage 1 1.32s 2.3
GPU mapping 2 Stage 2 0.58s 5.2
GPU mapping 2 Stage 3 0.41s 7.3

Table 3.1: Benchmarking the block matching algorithm

Table 3.1 shows that the differences in performance between the two
mappings are minimal. Therefore, it can be concluded that the differences
presented in section 3.2.2 are insignificant and/or cancelling each other. To
evaluate the scalability of both mappings, a second G80 GPU is introduced,
containing 112 instead of 16 PEs. This GPU, the GeForce 8800GTS, runs at
almost twice the clock frequency of the 9400M and is positioned in 2007 as
a high-end GPU. The benchmarks show a speed-up between a factor 8 and
9 compared to the 9400M GPU for the various stages and mappings. This
brings the speed-up compared to the CPU implementation ranging from a
factor 20 (stage 1 optimizations) to 75 (stage 3 optimizations) for the first
mapping approach. The second mapping shows a similar speed-up compared
to the 9400M GPU.



Chapter 4

Visualizing GPU binaries

Since chapter 3 shows a long optimization and mapping process in order to
achieve an efficient mapping, the question arises whether it is possible to
automate parts of this process. Automating this can be done by improv-
ing the CUDA compilers, achieving a more efficient mapping automatically.
However, since a GPU binary is unreadable and a part of the compiler is
unspecified, compiler behaviour cannot be evaluated nor improved. To do so
anyway, a GPU binary decoder needs to be developed. A motivation for the
development of such a GPU binary visualizing tool is presented in section
4.1. By evaluating an existing decoder in section 4.2, the properties of GPU
binaries are introduced to the reader. Then, with the development of a new
decoding tool justified, a new tool is presented in section 4.3. The tool is
positioned within the CUDA compilation flow and evaluated in section 4.4.

4.1 Automating the mapping and optimization pro-

cess

In this section, the programming experiences with respect to the mapping
of an algorithm onto a GPU using CUDA are evaluated, resulting in a
motivation for the design of a GPU binary visualization tool. First of all, a
typical programmers’ timeline is given, modelled after the mapping of the
block matching algorithm:

0. Learning CUDA When mapping the first algorithm, the programmer
needs to learn the CUDA basics, including some background on GPU
hardware.

1. Creating a naive implementation Assuming the target algorithm is
suited for parallelization, the programmer needs to know little of the
algorithm to create a naive implementation.

27
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2. Optimizing the algorithm To create an optimized solution - compa-
rable with stage 1 or 2 from section 3.4 - the programmer needs to
know more about the algorithm, the GPU hardware and the CUDA
thread model.

3. Exploring different mappings For a more efficient solution, the pro-
grammer might change from a naive mapping to another mapping,
as is done with the block matching algorithm. To design an efficient
mapping, the programmer might alter the algorithm itself.

4. Full hardware usage To make complete use of the hardware, an op-
timal mapping has to be designed, including optimizations for both
memory and computation operations. In this step, the programmer
might evaluate compiled code - optimizing the intermediate PTX code
or the resulting GPU binary.

For block matching, performing steps 1, 2 and 3 yields a speed-up of
a factor 751. However, most programmers do not fulfill every above men-
tioned step [2]. Moreover, an estimation of typical programmer behaviour
is shown in figure 4.1, along with estimations of typical speed-up factors on
a high-end GPU compared to a naive CPU implementation2. Please note
that the percentages in figure 4.1, representing the fraction of programmers
choosing the corresponding path, are for illustration purposes only and do
not represent actual data.

Sequential code

2x speed-up

Step 1

~75% ~20% <1%

Step 2 Step 3 Step 4

10x speed-up 50x speed-up 100x speed-up

~5%

Figure 4.1: Behaviour of CUDA programmers

For an efficient mapping of any algorithm - including the block match-
ing algorithm - the programmer needs to have knowledge of CUDA, the
thread model, the GPU architecture and the algorithm itself. Apart from
knowledge, in order to efficiently use the hardware, the programmer needs
valuable time. As has been seen, parallel programming languages - such as
CUDA - still demand knowledge and time from the programmer in order
to efficiently use the hardware. To automate the mapping and optimization

1Speed-up compared to a naive CPU implementation using a 8800GTS GPU
2Estimations are based on the CUDA-zone showcases [17]
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process, the CUDA compilation flow can be improved by either adding tools
or modifying the compilers.

Currently, CUDA source-to-source optimizers exist [2]. These optimizers
are positioned at the beginning of the CUDA compilation flow, as can be
seen in figure 4.2. Shown in the same figure are adjustments to the nvcc
compiler and PTX-to-PTX compilers, both areas currently being researched.
However, the last part of the compilation flow - involving ptxas - is an area in
which no research has been done. Since the source of ptxas is unavailable and
the resulting GPU binary is unreadable, this part of the CUDA compilation
flow is still a mystery. This chapter presents a decoder for GPU binaries, in
order to propose improvements for ptxas, further automating the mapping
and optimization process.

Areas currently being 
researched

Original compilation flow

nvcc

PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

adjusted
nvcc

CUDA 
optimizer

PTX 
optimizer

Figure 4.2: Automating the mapping and optimization process

4.2 Analyzing an existing decoder

To be able to analyze the ptxas compiler, the binary (which is in hexadecimal
form) needs to be decoded into a readable, understandable language. In
2007, W.J. van der Laan created such a decoder, named decuda, decoding
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GPU binaries into an assembly language close to PTX [23]. The decoder,
designed through reverse engineering, has several drawbacks:

Design Since the designer of decuda started from an empty set of known
instructions, the source code of the tool is chaotic. For every known
rule, an additional if-then-else statement is introduced, expanding the
source code while gathering more information and ending up with
unreadable source-code.

Correctness Since decuda is solely based on reverse engineering, it cannot
be proved that the decoding algorithm is correct. Since it is based on
a finite set of test cases, it cannot be guaranteed that decuda decodes
correctly in all test cases.

Usability Using decuda, information can only be extracted with under-
standing of the PTX virtual instruction set - or partly for any other
assembly language. Then, in order to draw any conclusions, the ob-
tained decoded instructions need to be analyzed and compared with
the PTX or CUDA source code.

4.3 The design of CUDAvis

In order to overcome the mentioned drawbacks of decuda in section 4.2,
a new decoder is introduced, named CUDAvis3. The design of CUDAvis
can be divided into two stages - the decoding stage and the visualization
stage. Both stages are depicted in figure 4.3. First, in the decoding stage,
instructions are identified. From the GPU binary, individual instructions
are passed on to the instruction-type decoder, which uses a look-up-table to
identify the instruction-type and the operands’ locations and types. Then,
the instruction is passed on to the operands decoder, which uses rules from
a database, able to modify the operands’ locations and types found in the
previous step. After all instructions are decoded, the branches and labels
are identified. The resulting data is stored in assembly format and as a data
structure.

The resulting data structure is accessed in the visualization stage. The
instruction and operand visualizers create a visual interpretation for each
instruction and operand in the binary. Then, branches and labels are vi-
sualized, followed by a register live range checking algorithm. This results
in a full view of every register, indicating if it is occupied, written, read
or unused. Finally, a bottleneck identifier highlights possible bottlenecks,
giving feedback to the programmer.

3CUDAvis is short for CUDA visualization tool
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Figure 4.3: The design of CUDAvis

4.4 Evaluation of CUDAvis

The development of CUDAvis results in the removal of decuda’s drawbacks:

Design Since decuda’s result can be re-used in CUDAvis, the design can be
made more elegant. Because the GPU includes a hardware instruction
decoder, hardware exists that mimics the behaviour of decuda. This
hardware is designed using general rules and look-up-tables instead of
thousands of small rules. CUDAvis is designed with the idea to mimic
the hardware instruction decoder, using look-up-tables and general
rules. In the design of the tool, data is separated from control and
saved in pre-defined structures. The result is readable, compact and
intuitive code, leaving room for adjustments and expansions.

Correctness Since CUDAvis follows general guidelines and uses look-up-
tables, the probability of correctness compared to decuda is increased.
Still, full correctness cannot be guaranteed.

Usability After decoding, CUDAvis generates a visual impression of the re-
sulting assembly code, identifying among others loop structures, basic
blocks, memory accesses, register live ranges and bottlenecks.

CUDAvis is positioned within the CUDA compilation flow as seen in
figure 4.4. The usage of CUDAvis is twofold:
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Original compilation flow

nvcc

PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

Custom compilation flow

CUDAvis

feedback

readable
GPU binary

Figure 4.4: CUDA compilation flow extended with CUDAvis

• Firstly, CUDAvis is used by programmers to evaluate compiled code.
Programmers can identify structures, register live ranges and bottle-
necks in the code, which may not be present or visible in high-level
CUDA or intermediate PTX code. Programmers can then alter and
recompile high-level code, to remove bottlenecks or to avoid unwanted
steps taken by any of the two compilers.

• Secondly, CUDAvis is used to evaluate the behaviour of ptxas. In
chapter 5, a number of improvements to ptxas is proposed, resulting
in more automated optimizations within the CUDA environment.

The results of both the decoding and the visualization stage are shown
in figure 4.5, serving as an illustrating example.
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Original GPU binary Decoded GPU binary

Decoding using 
CUDAvis

Visualized GPU binary

Visualizing using 
CUDAvis

Figure 4.5: Example usage of CUDAvis
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Chapter 5

Compiler improvements

With the tool introduced in chapter 4, the ptxas compiler can be evalu-
ated and adjustments can be proposed. Since ptxas’ source code is not
available, all improvements are presented as algorithms using pseudo-code.
This chapter uses the first mapping of the block matching algorithm as a
running example. The different adjustments are introduced in different sec-
tions. First, in section 5.1, non-linear register allocation is discussed. Next,
in section 5.2, the possibilities of value recalculation are discussed, along
with, in section 5.3, a technique to more efficiently schedule instructions.
Then, in section 5.4, the idea of using the shared memory as a register file
is introduced. Finally, in section 5.5, redundant instructions are identified
and removed. This chapter will conclude with an evaluation of all proposed
improvements in section 5.6.

5.1 Non-linear register allocation

Currently, ptxas performs linear register allocation. That is, ptxas tries
to minimize the register count. In subsection 5.1.1, the current register
allocation technique is discussed. It is shown in subsection 5.1.2 - in which
an alteration to the current technique is given - that a non-linear approach
to register allocation can show an improvement to performance. The non-
linear register allocation technique is presented as a proposed improvement
for ptxas through pseudo-code and is analysed in subsection 5.1.3.

5.1.1 Current register allocation techniques

The main task of ptxas is to assign variables to locations in the register file.
In PTX, variables are mapped to virtual registers. In other words, corre-
sponding register names in PTX denote corresponding variables. However,
in PTX, an infinite number of registers is assumed, and therefore, no register
is re-used to store another value. In compiler theory, research for optimal

35
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register allocation has been done extensively in the past [3]. Register allo-
cation algorithms come in two flavors, one for fixed-size register allocation
and one for minimum register allocation. In ptxas, the latter is used.

In G80 hardware, each streaming multiprocessor (SM) has a register file,
consisting of 8192 registers, each able to store a 32-bit word. As mentioned
before in section 2.4, these registers are divided over the threadblocks run-
ning on the SM. Then, for each threadblock, the registers are divided over
the threads running in a threadblock. A maximum of 768 threads are al-
lowed on one multiprocessor. Please keep in mind that, as stated in section
2.5, the more threads are running on a multiprocessor, the more the off-chip
memory latencies can be hidden.

Let us look at an example, using G80 hardware and a threadblock-size of
256 threads. If one thread would use 11 registers, one threadblock uses 2816
registers. In this case, 512 threads (two threadblocks) can be scheduled onto
one streaming multiprocessor, consuming 5632 registers. Three threadblocks
will not fit, as they would use more than the available 8192 registers. Now,
consider a second example in which one thread would use 16 registers. In
this case, still two threadblocks (4096 registers each) can be scheduled onto
one multiprocessor, using all the available registers.

From this example it can be seen that any register allocation optimiza-
tion done on a 16-register-per-thread 256-threads-per-block program yield-
ing 11 or more registers will not contribute to any speed-up. In fact, it could
even be slower, as register allocation optimizations can introduce additional
instructions. To summarize the conclusions drawn from the example, a
table is drawn, showing hardware usage for different numbers of registers-
per-thread for a threadblock-size of 2561. This is seen in table 5.1, which
shows a non-linear number of threads per SM when evaluating against the
number of registers per thread.

5.1.2 Proposed technique for register allocation

Since the unused registers from the examples in 5.1.1 and from table 5.1
are not used for any other purpose, it is not necessary to try to reduce
the number of registers to a value as small as possible. As seen in the
example, for a threadblock-size of 256 and a G80 architecture, it is only
beneficial to reduce the number of registers per thread to a value of 10
(yielding 768 threads per SM ), 16 (yielding 512 threads per SM ) or to
32 (yielding 256 threads per SM ). Thus, the register allocation algorithm
should not be linear, but step-wise.

To implement this in ptxas, an algorithm needs to be found, valid in all
cases. Define the number of registers available per streaming multiprocessor
as totalRegisters, the threadblock-size as threadblockSize and the number of

1Please note that 256 is an example value. Any other threadblock-size value will yield
a similar conclusion
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Registers per thread Threads per SM Register usage Register usage (%)

0-9 768 - -
10 768 7680 94
11 512 5632 69
12 512 6144 75
13 512 6656 81
14 512 7168 88
15 512 7680 94
16 512 8192 100
17 256 4352 53

18-32 256 - -

Table 5.1: Hardware usage for different register usages

registers per thread as threadRegistersn (in which n denotes the number of
the boundary). Then, the formula

threadRegistersn =

⌊

totalRegisters

768 − n · threadblockSize

⌋

,

with 0 < n <

⌊

768

threadblockSize
− 1

⌋

gives us the boundaries for register allocation. In the case of a threadblock-
size of 256, the boundaries between 768 and 512 threads, 512 and 256 threads
and between 256 and zero threads per SM can be found using

threadRegisters0 =

⌊

totalRegisters

768

⌋

,

threadRegisters1 =

⌊

totalRegisters

512

⌋

and

threadRegisters2 =

⌊

totalRegisters

256

⌋

.

In the last case, only one threadblock can be scheduled onto a streaming
multiprocessor. If, however, more registers are used than available, register
spilling (discussed in section 5.4) is used to ensure that the kernel can be
scheduled onto the hardware.

Now, with these boundaries known, ptxas can extract the variables - from
the architecture (totalRegisters) and from the CUDA code (threadblockSize)
- and calculate the boundaries. The compiler tries to meet the first boundary
(threadRegisters0), then the second (threadRegisters1) and so on. If none
of these boundaries are met, the compiler should use a minimum register
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Listing 5.1: Non-linear register allocation

threads = 768
f i n i s h e d = fa l se

while f i n i s h e d == fa l se

r e s u l t = f ixedReg i s te rAss i gnment ( boundary ( threads ) )
i f r e s u l t == succe s

f i n i s h e d = true

else

threads = threads − th r eadb lo ckS i z e
end

i f threads < th r eadb lo ckS i z e
minimumRegisterAssignment
f i n i s h e d = true

end

end

allocation and use register spilling for any register not meeting any boundary.
In pseudo-code, the complete algorithm can be seen in listing 5.1.

In words, the algorithm can be described as follows. First, the bound-
aries are tested in reverse order. If any of the boundaries are met, the
process stops. If none of the boundaries are met, a minimum register allo-
cation algorithm is applied, using register spilling to ensure scheduling on
the hardware. Using the presented algorithm, the amount of registers per
thread will always be equal to one of the boundaries, resulting in optimal
hardware usage. In the case of the G80 and a threadblock-size of 256, this
means threads will either use 10, 16 or 32 registers.

Please note that the presented algorithm abstracts from some use-cases.
Firstly, it must only be applied if register usage per thread is the limiting
factor for thread scheduling. Also, in the case when the user specifies less
than 768 threads, a slightly modified variant of the algorithm needs to be
applied. Or, in the case of a limit caused by the shared memory usage of a
thread, a similar algorithm needs to be applied, but now assigning registers
depending on the usage of shared memory per threadblock.

5.1.3 Analysis of non-linear register allocation

Even though the proposed technique for non-linear register allocation seems
promising, the actual speed-up might be small or non-existent. Since the
original linear register allocation algorithm would find the smallest register
allocation and the non-linear algorithm will have more freedom and thus use
more registers, the number of threadblocks running on one multiprocessor
will not increase. However, a relaxation of the register constraints may
contribute to several different aspects:
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Compile time Having weaker register constraints can reduce compile time.
For just-in-time compilation, this can be a useful achievement, but in
most cases reduction in compilation time is not regarded as a valuable
improvement.

Instruction re-ordering Since the compiler has more available registers,
it will also have more freedom with instruction re-ordering. To benefit
from this, the compiler needs to know when to apply re-ordering, which
will be discussed in section 5.3.

Value recalculation If the compiler knows it has to save a few registers
to reach a boundary in the non-linear algorithm, special techniques
can be applied to use fewer registers, while introducing additional
instructions. One such a solution is value recalculation, discussed in
5.2.

So, in general, it can be concluded that the use of a non-linear regis-
ter allocation algorithm benefits from other compiler techniques, which are
currently not implemented in ptxas, but are proposed in this chapter.

5.2 Value recalculation

Currently, ptxas does not provide the ability to use value recalculation as
a register-saving technique. However, value recalculation can save registers
during bottlenecks, recalculating discarded register values whenever needed.
In subsection 5.2.1, an example is taken to show that ptxas does not perform
value recalculation in cases where it intuitively should. Then, in subsections
5.2.2 and 5.2.3, an algorithm is proposed to perform value recalculation.
The results of this improvement will be shown in subsection 5.2.4.

5.2.1 Block matching as an example

Let us take the example of the block matching algorithm as described in
section 3. After visualizing the kernel code using the tool CUDAvis from
section 4.3, it can be observed that four variables are kept alive during the
entire kernel and are only used sporadically. These variables are grouped in
two types:

• The variables threadIdx.x and threadIdx.y denote the position of a
thread within a threadblock (in this case in two dimensions), used by
CUDA to distinguish threads from each other. These variables are
unique for each thread and are stored in a special register file. The
compiled block matching kernel converts the two variables to another
format (using the cvt instruction), and stores them in a regular regis-
ter. This is done in the first two lines of the kernel. Then, they are
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read in lines2 4, 5, 6, 44, 45, 123, 124, 128, 131, 312 and 314. At
the moments threadIdx.x and threadIdx.y are read, there is no register
bottleneck. However, in between, the variables are kept alive, with
register bottlenecks at lines 23 and 90 of the kernel. Recalculation is
not performed by ptxas, but only takes four instructions (two vari-
ables, two bottlenecks) and save two registers per thread, allowing for
a potential scheduling of more threads on the SM.

• The variables blockIdx.x and blockIdx.y are analogue to the thread
identifiers, but represent the coordinates of a threadblock in the grid.
These variables are equal for all threads in a block, and are stored in
a special shared memory. In the block matching kernel, they are both
multiplied by a constant and stored in regular registers in the first
lines of the compiled code. Then, they are read in lines 8, 11, 42, 43,
50, 313 and 318. The same conclusions can be drawn as for the thread
identifiers - they are kept alive during the register bottlenecks in the
code, but require only one instruction each to recalculate.

The example shows potential for register saving through value recalcu-
lation. Still, the conclusions from section 5.1 must be kept in mind: value
recalculation is only interesting if a boundary is crossed, otherwise it only
introduces additional instructions, resulting in poorer performance.

5.2.2 When to apply value recalculation

In section 5.2.1 it is suggested that value recalculation is useful to apply
for the example case. Thus, an algorithm needs to be found to be able to
determine if a value should be kept alive or recalculated. Intuitively, this
algorithm compares the drawback (additional instructions) to the potential
gain (fewer registers). The potential gain can be expressed as the crossing of
a boundary using the non-linear register allocation technique. Crossing one
boundary can introduce up to twice as many threads, leading to a speed-up
of a factor 2 in an ideal case. This speed-up can be reached only if the
bottleneck of the kernel is determined by memory latency, and the number
of threads scheduled is not enough to hide this latency.

To decide for the recalculation of a value, the compiler needs to know
certain properties of the algorithm, which are discussed below:

• Firstly, it needs to know when a boundary is crossed. Using non-
linear register allocation, the compiler knows whenever the crossing
of a boundary occurs. Only when a boundary can be crossed, value
recalculation should be considered as an option.

2Please note that the line numbers of compiled kernel instructions are introduced for
illustration purposes and do not refer to any actual code included in the document
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• Secondly, the compiler needs to know where the register usage bottle-
neck is situated in the kernel. If the value that needs to be recalculated
is used at the moment of the bottleneck, it should not be recalculated,
because it would not save any registers. Value recalculation should
only be applied if the register for the target value is kept alive during
the time of the bottleneck, but not used. The compiler can calculate
the bottlenecks for register usage and the accesses to the target value,
so it can see if this condition holds.

• Then, the compiler needs to know the number of instructions required
to recalculate the target value. This can be extracted from the code
itself, and does not need to present any problem for the compiler.
The type of instruction should be evaluated, introducing additional
accesses to the off-chip memory will not likely lead to any performance
increase.

• Lastly, the compiler needs to know how much the crossing of a bound-
ary will contribute to better performance due to the scheduling of more
threads on the hardware. However, this could be a problem. The com-
piler can analyse the structure of the code and do a prediction on how
much the performance of the kernel depends on the number of threads.
However, this can be fairly complicated and inaccurate.

To illustrate this, an example is taken. Say, a kernel consists of 300
instructions and a target variable is kept alive during the bottleneck of
the register usage. In this example, the reduction of this one register will
lead to the crossing of a boundary, but will also introduce 30 computation
instructions3. Combined, this will introduce 10% more instructions. The
compiler then has to estimate the potential gain and decide whether to
perform value recalculation.

5.2.3 An algorithm for value recalculation

In 2009, S. Hong and H. Kim introduced an analytical model to completely
describe the performance of the execution of a kernel on a GPU [13]. Though
their result shows to be quite accurate, the model considers many more
aspects than needed for the evaluation of the potential gain when introducing
value recalculation. Therefore, a new algorithm is developed, satisfying the
rules mentioned in section 5.2.2. First, a number of variables are defined:

• The variable threadGain is defined as the additional number of threads
to be scheduled whenever a boundary is crossed. This value corre-
sponds to the threadblock-size: threadGain = threadblockSize.

3Computation instructions are considered instructions not accessing the off-chip mem-
ory, so a shared memory load for example is considered a computation instruction
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• Secondly, the amount of warps needed to hide the memory access
latencies is given by

memAccessHiding =
memoryAccess

4 · (compOps + 1)
,

with memoryAccess denoting the memory access time in clock cycles
and compOps the number of computation operations prior to a mem-
ory access 4. As seen in section 2.5, other warps execute instructions
while the first warp waits for their memory accesses.

• With the minimal amount of threads known to hide the memory la-
tency, a potential thread shortage (threadShortage) can be calculated
as currentThreads subtracted by memAccessHiding. Note that the
shortage can be negative, in which case the memory access latencies
are completely hidden and the addition of more threads will not result
in a speed-up.

• Lastly, additonalOps is introduced. This variable is defined as the
number of additional computation instructions added to the kernel for
the recalculation of a target variable. These instructions are assumed
to be added after the memory load, but the presented algorithm can be
adjusted in case of the additional instructions being scheduled before
the memory load.

Using the above notations, the algorithm can be presented. It is based on
partitioning the kernel into blocks of (zero or more) computation instructions
followed by exactly one memory access. With this partitioning, every block
can be evaluated in terms of computation instructions compared to the
number of threads. This way, a value recalculation can be justified or not.
The algorithm is presented in pseudo-code in listing 5.2, using the introduced
notations.

To illustrate the usage of the algorithm, an example is taken. Assume
a threadblock-size of 256 (threadGain = threadblockSize = 256) and a
possibility to perform value recalculation by using 2 additional operations
(additonalOps = 2), which is said to cross a boundary. In an example
block of instructions, compOps is equal to 14. This means that every warp
has a total of 60 (compOps plus the memory operation, multiplied by four)
cycles of work, before it has to wait for a memory access, which takes 600
cycles in this example case (memoryAccess = 600). Then, the minimum
number of threads for memory access hiding is calculated, yielding 10 warps
(or 320 threads). After subtracting this value from the actual number of
threads, the shortage is known: 2 warps (or 64 threads) in the example.

4One instruction (computation or memory) is assumed to be executed in four clock
cycles, as part of an SIMD warp [14]



5.2. VALUE RECALCULATION 43

Listing 5.2: Value recalculation

threadGain = thr eadb lo ckS i z e
computation = 4 ∗ ( compOps + 1)
memAccessHiding = memoryAccess / computation
threadShortage = memAccessHiding ∗ 32 − currentThreads
i f ( threadShortage > 0)

speedUp = (min( threadGain , threadShortage )/32)∗ computation
speedDown = threadGain ∗ additonalOps ∗ 4 / 32
i f ( speedUp > speedDown)

per fo rmValueReca lcu la t ion ( )
end

end

Since this value is positive, adding more threads will result in a speed-up,
which yields 120 (64

32
· 4 · (14 + 1)) cycles per threadblock. This value is

then evaluated against the drawback - the addition of instructions - which
is equal to the added instructions multiplied by the number of threads in
a threadblock: 2 · 256 = 512 instructions per threadblock. In a warp, 32
instructions execute in 4 cycles, yielding 512·4

32
= 64 cycles per threadblock.

Because the drawback (64) is smaller than the gain (120), value recalculation
will be performed in this case.

It should be noted that the algorithm in listing 5.2 is only applicable to
an algorithm consisting of zero or more computation instructions followed
by one memory access. The algorithm can be extended to support multiple
blocks of computations followed by memory accesses, so that it can draw
a conclusion for the complete kernel whether value recalculation is useful.
For a typical simple kernel, the above algorithm will suffice, but bigger
algorithms may introduce scattered memory accesses and synchronization
points. However, the nature of the algorithm remains the same.

5.2.4 Results of value recalculation

Along with non-linear register allocation, value recalculation can provide a
speed-up in certain cases. With the proposed algorithm, value recalculation
will not be applied when yielding negative effects on performance. With a
slightly modified algorithm, the value recalculation algorithm can be applied
to any kernel code as discussed in section 5.2.3.

For the block matching algorithm, value recalculation is proven to be
useful. With the addition of 8 instructions, the four variables seen in section
5.2.1 can be recalculated twice. In this way, the four registers are free during
all bottlenecks in the code, resulting in more threadblocks per SM. In the
case of block matching, this results in a minor speed-up, due to already
enough active threads executing on an SM at any given time.
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Listing 5.3: Block matching as an example

texture [ read {$tex1} , index {$r1 , $r2} , wr i t e {$r1 , $r2 , $r3 , $r4 } ]
texture [ read {$tex2} , index {$r5 , $r6} , wr i t e {$r5 , $r6 , $r7 , $r8 } ]
shared [ read {$r1} , wr i t e ( sharedMemory ) ]
shared [ read {$r2} , wr i t e ( sharedMemory ) ]
shared [ read {$r3} , wr i t e ( sharedMemory ) ]
shared [ read {$r4} , wr i t e ( sharedMemory ) ]
shared [ read {$r5} , wr i t e ( sharedMemory ) ]
shared [ read {$r6} , wr i t e ( sharedMemory ) ]
shared [ read {$r7} , wr i t e ( sharedMemory ) ]
shared [ read {$r8} , wr i t e ( sharedMemory ) ]

5.3 Efficient instruction re-ordering

Currently, efficient instruction re-ordering is not performed by ptxas. In
subsection 5.3.1, an example is taken to motivate for instruction re-ordering.
Then, subsection 5.3.2 proposes to automatically perform re-ordering.

5.3.1 Block matching as an example

When analyzing the block matching algorithm with CUDAvis, the pattern
seen in listing 5.3 can be identified a number of times. In words, the first two
instructions write 8 values into the register file, which are read in the next 8
instructions. After these instructions, the registers are not used again, since
the data is stored in the shared memory. In table 5.2, the register usage
can be seen. The table shows if a register is empty (’-’), live (’l’), read (’r’),
written (’w’) or both read and written (’a’). The register status is evaluated
after each instruction in the code pattern shown in listing 5.3.

1 2 3 4 5 6 7 8

1 a a w w l l - -
2 l l l l a a w w
4 r l l l l l l l
5 - r l l l l l l
6 - - r l l l l l
7 - - - r l l l l
8 - - - - r l l l
9 - - - - - r l l
10 - - - - - - r l
11 - - - - - - - r

Table 5.2: Register occupation in the block matching example
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Listing 5.4: Block matching as an example (2)

texture [ read {$tex1} , index{$r1 , $r2} , wr i t e {$r1 , $r2 , $r3 , $r4 } ]
shared [ read {$r1} , wr i t e ( sharedMemory ) ]
shared [ read {$r2} , wr i t e ( sharedMemory ) ]
shared [ read {$r3} , wr i t e ( sharedMemory ) ]
shared [ read {$r4} , wr i t e ( sharedMemory ) ]
texture [ read {$tex2} , index{$r5 , $r6} , wr i t e {$r1 , $r2 , $r3 , $r4 } ]
shared [ read {$r1} , wr i t e ( sharedMemory ) ]
shared [ read {$r2} , wr i t e ( sharedMemory ) ]
shared [ read {$r3} , wr i t e ( sharedMemory ) ]
shared [ read {$r4} , wr i t e ( sharedMemory ) ]

As can be seen from table 5.2, the peak register usage equals 8. However,
listing 5.3 can be changed into the pattern as seen in listing 5.4. Then, the
register usage changes at the bottleneck from 8 to 6 registers, resulting in
occupations as shown in table 5.3.

1 2 3 4 5 6

1 a a w w l l
2 r l l l l l
3 - r l l l l
4 - - r l l l
5 - - - r l l
6 w w w w r r
7 r l l l - -
8 - r l l - -
9 - - r l - -
10 - - - r - -

Table 5.3: Register occupation after modification

Changing the order of the instructions does not only alter the num-
ber of registers needed, it also affects performance due to different schedul-
ing for the texture load instructions. Since the hardware switches to other
warps when it encounters a high latency memory operation a high number of
threads are needed to hide the memory latency. However, if threads have ad-
ditional computation instructions in between high latency operations, fewer
threads are needed to hide the memory latency. With the scheduling of com-
putation instructions in between memory loads - as done in the example -
less threads are needed to hide the memory latency. This results in a higher
performance in the cases when the memory latency is not entirely hidden.
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5.3.2 Automatically applying instruction re-ordering

Although instruction re-ordering can provide two clear advantages - a smaller
register usage and better memory latency hiding - the example from section
5.3.1 must be performed by hand, as ptxas does not perform it automatically.
The design of an instruction re-ordering algorithm for register minimization
is not presented in this work, since it has been thoroughly analyzed by oth-
ers and is widely used in compilers. Examples can be found in any compiler
theory handbook and can be implemented in ptxas with little adjustment.

5.4 Using the shared memory as a register file

As mentioned before in sections 2.4 and 5.1, register spilling to the off-
chip memory is a technique used by ptxas to ensure a valid mapping for
threads with heavy register usage. To fit at least one threadblock onto an
SM, register spilling to the off-chip memory is performed as soon as the
available registers are all used. Since the off-chip memory is relatively slow,
kernels that need register spilling are underperforming, forcing programmers
to redesign their kernels to fit onto the register files. Since a fast shared
memory is available on-chip, register spilling can instead be performed onto
the shared memory. A simple algorithm is presented in this section.

The algorithm first calculates the amount of registers to be spilled per
threadblock (spillingReg) as

spillingReg = threadReg · threadsblockSize − totalReg,

in which totalReg is an architecture constant and threadReg and thread-
blockSize are algorithm specific. Then, if the calculated value is positive,
the amount of unused shared memory freeShared is calculated as

freeShared = totalShared − usedShared,

in which totalShared is an architecture constant and usedShared is algo-
rithm specific. If the amount of free shared memory space is enough to fit
all spilled registers for the scheduled threadblock, registers spilling is per-
formed onto the shared memory. Else, register spilling can be performed to
the off-chip memory and possibly partly to the shared memory, as long as
there is space available. The presented algorithm is listed in pseudo-code in
listing 5.5. Since shared memory cannot be accessed in all instructions as
register values can, spilled registers are moved to the register file at points
where they are needed, analogue to the off-chip register spilling technique
currently used in ptxas.

Since the shared memory access times are comparable to register access
times, the only drawback of register spilling is the addition of instructions
to move spilled registers from or to the shared memory. The new register
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Listing 5.5: Register spilling onto the shared memory

s p i l l i n gReg = threadReg ∗ th r eadb lo ckS i z e − to ta lReg
i f ( s p i l l i n gReg > 0)

f r e eSha r ed = to ta lSha r ed − usedShared
i f ( f r e eSha r ed > s p i l l i n gReg )

pe r fo rmSp i l l i ngSha r ed ( )
else

per fo rmSp i l l i ngSha r edPar t ly ( f r e eSha r ed )
pe r fo rmSp i l l i ngOf fCh ip ( )

end

end

spilling technique removes high latency off-chip reads and writes, enabling
previous inefficient mappings to run efficiently on the GPU, extending the
possibilities of different mappings.

5.5 Removing redundant instructions

Evaluation of GPU binaries shows several occurrences of redundant instruc-
tions. The first two subsections of this section present examples to illustrate
the possibilities of redundant instruction removal, while the third subsection
presents and evaluates a technique to implement this in ptxas.

5.5.1 Multiple registers for the same value: an example

In the block matching algorithm, the following (simplified) pattern can be
identified in high level CUDA code a number of times:

value3 = tex tur e1 [ va lue1 + value2 ]
va lue4 = tex tur e2 [ va lue1 + value2 ]
va lue5 = tex tur e3 [ va lue1 + value2 ]

In which texture1, texture2 and texture3 denote three different arrays in
texture memory and value1, value2, value3, value4 and value5 are register
values. Because the compiler identifies the re-use of the index value for the
three different arrays, it calculates it only once. The following pseudo-code
listing is obtained from the compiled binary, found using CUDAvis:

add [ read { value1 } , read { value2 } , wr i t e {$r0 } ]
move[ read {$r0} , wr i t e {$r1 } ]
move[ read {$r0} , wr i t e {$r2 } ]
texture [ read {$tex1} , index{$r0} , wr i t e {$r0 } ]
texture [ read {$tex2} , index{$r1} , wr i t e {$r1 } ]
texture [ read {$tex3} , index{$r2} , wr i t e {$r2 } ]

As can be seen, the compiler ensures that the index value is pre-calculated,
but then copies it to both $r1 and $r2, storing it a total of three times.
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Each of the texture reads now read from a different register with the same
contents. This is obviously a waste of resources and can be changed into the
following listing without adjusting the behaviour of the code:

add [ read { value1 } , read { value2 } , wr i t e {$r2 } ]
texture [ read {$tex1} , index {$r2} , wr i t e {$r0 } ]
texture [ read {$tex2} , index {$r2} , wr i t e {$r1 } ]
texture [ read {$tex3} , index {$r2} , wr i t e {$r2 } ]

In this case, the total number of instructions is reduced. There are also cases
in which the removal of redundant copy instructions results in a reduction
of the number of used registers.

5.5.2 Multiple instructions for one calculation: an example

The second example shows redundant computation instructions. Using CU-
DAvis, the following lines of GPU binary code are decoded:

sh i f t l e f t [ read {$r0} , wr i t e {$r0} , amount {3} ]
shi ftr ight [ read {$r0} , wr i t e {$r0} , amount {1} ]

In words, a value is first shifted left by 3 - multiplied by 8 - and then
shifted right by 1 - divided by 2. Obviously, this equals a shift left of 2 -
a multiplication by 4. Therefore, the above listing can be changed without
altering the behaviour into:

sh i f t l e f t [ read {$r0} , wr i t e {$r0} , amount {2} ]

5.5.3 Evaluation of redundant instruction removal

From the two examples, it can be seen that GPU binaries contain redundant
instructions. These two types of redundant instructions can be removed
using the ptxas compiler:

• Removing multiple registers with the same data requires a pass over all
move instructions. Move instructions with two registers as operands
are target for removal. However, it appears that, from thorough binary
code analysis, the texture read function seen in section 5.5.1 has re-
strictions. Apparently, the index value has to be the same as the target
register5. This justifies the register movement, which can therefore not
be eliminated as done in the example. The question arises if this is an
instruction set restriction or a hardware restriction. In the first case,
the instruction set can be adjusted, enabling the removal of redundant
instructions.

Apart from the move instructions occurring in the example, move func-
tions between two registers also occur without being followed by a

5If there are multiple index values, the index values must overlap the first target reg-
isters
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texture read. These move functions might possibly be introduced to
overcome certain restrictions, in which case they are not redundant.
More knowledge on the instruction set and the hardware would enable
alterations to the instruction set, enabling the removal of redundant
move instructions.

• The second example requires a pass over all computation instruc-
tions, tracking each value and identifying redundant computations.
Of course, the compiler must then check if the merging of two instruc-
tions does not lead to erroneous data due to instructions using the
intermediate data.

5.6 Evaluation of the improvements

With all five improvements evaluated individually, it can be stated that
the modification of ptxas with the proposed improvements has a potential
to yield significant improvement. Some individual improvements show a
potential for more than a factor of 2 speed-up, given the right circumstances.
Together, the speed-up of all improvements can be noticeable on certain
algorithms. If ptxas would be improved as shown in this chapter, all existing
algorithms could benefit from a set of potential improvements at no cost,
reducing development time and/or yielding better performance.

However, since the improvements are not actually implemented in the
compiler, no numbers are known on the potential of the improvements, only
guesses can be made. To obtain any numbers on the actual benefits, either
NVIDIA has to adjust its compiler, or a ptxas clone with the proposed
improvements has to be designed from scratch.
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Chapter 6

Functionality changes

With the tool CUDAvis from section 4, a few weak points are found in the
CUDA environment which are not able to be solved by adjusting the tool-
chain. This section proposes functionality improvements for the hardware
of NVIDIA’s G80 family and alike. First, in section 6.1, a way to transfer
memory from the texture cache to the shared memory is proposed. Secondly,
in section 6.2, a second (non-cache) mode for the texture cache is introduced
as a hardware improvement.

6.1 From the texture cache to the shared memory

In the block matching algorithm, both the shared memory and the texture
cache are used to improve performance, as has been discussed in section 3.3.
A significant amount of variables read from texture memory (either hitting or
missing in the cache) are stored directly into the shared memory. However,
when evaluating the decoded GPU binary using CUDAvis, such a load from
texture memory is translated into multiple instructions. The reason for this
lies in the limitations of the texture reading instruction: the result can only
be stored in one (8/16/32-bit read) or more (vector read) registers. In order
to store the result into the shared memory, the intermediate values have to
be read from the register file and stored in the shared memory.

Apart from the additional instruction cost, this limitation requires a set
of registers to be available. In the block matching algorithm, three texture
vectors are read, each requiring 4 registers. These 12 registers are read once
and not used after - the values are stored directly into the shared memory.
During this texture read, a total of 12 registers are needed, yielding the
algorithm’s bottleneck of register usage. The high level CUDA code and the
decoded binary for one such vector read are both listed:

# CUDA−code
shared [ x ] [ y ] = tex2D ( texture , x , y ) ;
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# Decoded b inary (PTX assembly )
tex . load {$r0 , $r1 , $r2 , $r3} $tex1 {$r0 , $r1}
mov . shrd s [ 0 x002c ] $r0

mov . shrd s [ 0 x002d ] $r1

mov . shrd s [ 0 x002e ] $r2

mov . shrd s [ 0 x002f ] $r3

As can be seen, the texture load stores its result into registers $r0, $r1,
$r2 and $r3, using the two-dimensional index values $r0 and $r1. The
intermediate registers are then directly read in order to be saved onto the
shared memory in successive memory locations. In order to reduce the above
example to fewer instructions and reducing the register usage, the following
instruction is proposed:

tex . load s [ 0 x002c ] $tex1 {$r0 , $r1}

This instruction reads the two index values from the register file and uses
them to read the correct data from the texture memory. It then accesses the
shared memory at the correct location to write the loaded data on successive
locations.

In order to implement this proposed instruction, both the hardware and
the compiler need to be adjusted. Since the exact hardware architecture
is unknown, a proper implementation can only be guessed at. Because
instructions saving to shared memory exist and instructions reading from
the texture cache exists, it might be sufficient to add this instruction type
to the hardware instruction decoder, enabling the new instruction. Then,
no changes have to be made to the SM or PE architecture.

6.2 Scratchpad access for the texture cache

As seen in section 2.4.2, two SMs share a 16KB texture cache. For 32-bit
words, each SM has on average access to 2048 words. With multiple thread-
blocks executing on an SM and with hundreds of threads context switching
to hide memory latency, cache contents include data from numerous threads.
The texture cache can be used efficiently by the programmer in two ways:

• The programmer specifies two reads of the same variable in one thread,
assuming the second read will result in a cache hit. However, even
if the two reads are directly following each other in the programmers
code, a large number of threads (from the same and from other thread-
blocks) could be using the texture cache in the meantime. There-
fore, the programmer must thoroughly evaluate the scheduling of his
threads on the hardware, before assuming a cache hit.

• Secondly, the programmer can read a value in one thread and assume
a cache hit in another thread. The programmer has to consider other
threadblocks using the cache in the meantime. Also, threads from the
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same threadblock that are executing different parts of their code might
overwrite these values.

Because of the limited size of the cache and the concurrent execution of
multiple threads, texture cache benefits in CUDA are limited. Only with a
good analysis, the texture cache can be used efficiently.

To improve performance, the texture cache can be given a second mode.
Apart from the cache mode already implemented, the user could be able
to enable through CUDA a second scratchpad mode. This mode disables
the cache functionality and enables an on-chip memory comparable to the
shared memory. However, since the texture cache is read-only from a thread
perspective, the newly created scratchpad memory will be read-only as well.
A potential usage could be along the lines of a controlled texture cache:

1. First, the programmer specifies which part of the off-chip memory is
the most re-used.

2. Then, on execution of the program, the host copies that data onto all
texture caches.

3. On execution of a thread, this data can be read from fast on-chip
memory.

To enable such a second mode, no major hardware changes have to be
made. Since the memory and the busses are already available, only the
caching mechanism needs to be extended with a scratchpad access mecha-
nism. In order to use the newly created possibilities, the instruction set and
the CUDA API have to be adjusted.

For applications that do not benefit from the texture cache - such as
the block matching algorithm - the second mode can be used, leading to a
potential performance gain. For other applications, the original cache mode
can still be used, resulting in no performance loss. The only drawback is
the addition of little hardware, almost negligible compared to the addition
of a new 16KB scratchpad memory next to the texture cache. However, as
seen in section 2.5, a GPU like architecture does not benefit from a cache
as much as a traditional multi-core architecture. Instead, a GPU hides its
memory latencies by scheduling more threads. Guz et. al. show a negligible
speed-up when using a cache in a many-thread machine such as a GPU [10].
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Chapter 7

Conclusions

To conclude the research performed in this work, the related work is sum-
marized in section 7.1. With the related work in mind, the uniqueness of the
research is shown. Then, possibilities for further work are given in section
7.2. These sections together give the background - the starting knowledge
- and a vision of the future, positioning the work in its context. The work
itself is then summarized in section 7.3, highlighting the most important
conclusions and achievements.

7.1 Related work

As mentioned before, GPUs can accelerate algorithms or part of algorithms,
yielding up to orders of magnitude more performance than traditional CPU
architectures. However, in order to fully utilize the hardware, programmers
are left with the non-trivial task of mapping and going through optimization
procedures. To reduce the needed programming effort and to increase the
hardware utilization, the CUDA compilation flow can be adjusted.

One such adjustment to the CUDA compilation flow is the addition of
CUDA source-to-source compilers. S. Baghsorkhi et. al. present such a
source-to-source compiler, named CUDA-lite [2]. With CUDA-lite, perfor-
mance can be increased by a factor 2 to 17, depending on the level of opti-
mization already applied and the algorithm. However, this source-to-source
compiler requires annotations in the source code, giving pointers to CUDA-
lite for potential optimization steps. For an automated optimizer requiring
no knowledge nor effort from the programmer, annotations as necessary by
CUDA-lite should be omitted.

Other automatic optimization and mapping efforts are performed as part
of the design of a simulator or a translator. An example of this is Ocelot
[6], a translator from a GPU to a Cell architecture at a PTX level. In the
work performed by G. Diamos et. al., several GPU concepts are mapped
onto a Cell architecture automatically. Since the target architecture is a
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Cell processor, no specific GPU optimizations are performed, although some
optimizations and mapping techniques are valid for both architectures.

Another way to reduce programming effort and to increase hardware
utilization is to modify the current CUDA compilers. As of now, no mod-
ifications to either compilers are known to be made. However, the work of
W.J. van der Laan shows interest in this area, as he reverse engineered GPU
object code [23]. With the results of Van der Laan’s research, a new tool is
introduced in this work, showing improvements on correctness and usability
over the original tool. Many conclusions in this work are based on Van der
Laan’s research.

Although automated mapping and optimization for GPUs is an area
not widely researched, AMD and Intel have shown interest in a hybrid
CPU/GPU architecture, performing automated distribution of work. Sim-
ilar to this is Intel’s Larrabee architecture [22], showing a multiprocessor
architecture including simple CPUs and wide vector units. Larrabee is com-
patible with the x86 instruction set, mapping automatically the work onto
the different processing elements available.

7.2 Further work

To shorten GPGPU programming time and to achieve better hardware us-
age, several abstractions need to be made from the programming and hard-
ware models. Programmers will require a fully automated memory, thread
and threadblock mapping. Also, general and algorithm specific optimiza-
tions have to be done automatically. Although the road to such an abstrac-
tion is long, this work proposes a number of improvements to the existing
compiler in section 5, setting a step in the right direction. This work iden-
tifies a number of weaknesses in one specific area of the compilation flow,
indicating a much larger opportunity for improvement to both the compila-
tion flow and the hardware.

With GPUs performing orders of magnitude better in several applica-
tions compared to traditional CPU architectures, it is worth considering the
effort to work towards this adjusted compilation flow and hardware, creat-
ing a more efficient mapping process for general purpose algorithms onto
GPUs. In the future, this could lead to a heterogeneous hybrid multipro-
cessor, containing both a CPU and a GPU part. An automated compiler
could take sequential code, mapping tasks to either the GPU or the CPU
part of the hybrid processor, resulting in efficient hardware usage without
additional programmer requirements.
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7.3 Summary

The last few years show a shift towards multi-threaded processor architec-
tures, among with the rise of GPGPU programming. The shift replaces
single thread machines with massively parallel machines, running thousands
of threads. The G80 architecture, programmable in CUDA, is designed to
hide memory access latency through context switching. For GPGPU pro-
gramming, the G80 architecture contains a fast specialized on-chip shared
memory.

With CUDA, mapping an algorithm - such as block matching - onto a
GPU is a fairly simple task. However, after the first naive mapping, the
programmer must follow a long trajectory of alterations and optimizations.
The algorithm benefits from all capabilities of the hardware only after this
trajectory is completed. This is shown in the mapping process of the block
matching algorithm onto a GPU. Two different mappings and a number of
optimizations have been explored, resulting in speed-ups orders of magnitude
higher than the initial naive implementation.

From the mapping and optimization process of the block matching algo-
rithm, it is concluded that programmers have to follow a trajectory possibly
subject to partial automation by the CUDA tool-chain. Since the first com-
piler, nvcc, is already thoroughly evaluated, the second compiler, ptxas,
is analyzed. Since the behaviour of ptxas is unknown, a decoder for GPU
binaries has been developed. This decoder, known as CUDAvis, provides vi-
sualization functionality to give feedback to the programmer. Additionally,
CUDAvis has been used to analyze ptxas and to present improvements.

With CUDAvis, a number of possible adjustments to ptxas are identified
and presented:

Non-linear register allocation It has been shown that register alloca-
tion on a GPU must be performed stepwise. Applying non-linear
register allocation yields significant improvements when other regis-
ter allocation techniques are implemented in the compiler. Reducing
the register count makes room for more scheduled threads, resulting in
better memory latency hiding. An algorithm to implement non-linear
register assignment has been presented.

Value recalculation The recalculation of register values not used at bot-
tlenecks in the kernel yields a lower register count per thread. However,
it introduces a number of additional computational instructions, de-
pending on the value to be recalculated. In the presented algorithm,
the drawbacks are compared to the potential performance gain.

Instruction re-ordering Through an example, it has been shown that in-
struction re-ordering can reduce register count. Automated instruction
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re-ordering for register optimization is implemented in many modern
compilers, but currently lacks in ptxas.

Efficient register spilling Register spilling is currently performed onto
the off-chip memory. Since this reduces performance significantly, ker-
nels that use too many registers are typically adjusted to fit onto the
register file anyhow. However, when the shared memory is not entirely
used, register spilling can be performed onto the shared memory. An
algorithm to do so has been presented.

Redundant instruction removal Two types of redundancy have been
identified by examples. First, register duplication occurs in the GPU
binary. Secondly, multiple computation instructions that can be done
in one instruction occur as well. An evaluation of both types of redun-
dancy has been provided.

Also, from the mapping of the block matching algorithm and with the
use of CUDAvis, two hardware improvements are identified:

Texture cache to shared memory loads Altering the instruction set en-
ables instructions writing directly to the shared memory from the tex-
ture cache, an operation common in the block matching algorithm.
Currently, this is done in two steps, using registers as intermediate
storage. The presented hardware change reduces the instruction count
and the register usage.

The texture cache as a scratchpad memory In a lot of CUDA ker-
nels, the texture cache is used inefficiently. With little hardware addi-
tion, the texture cache can be transformed into a scratchpad memory,
enabling content control for programmers.
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