GPU-CC: a Reconfigurable GPU Architecture with
Communicating Cores

Gert-Jan van den Braak

Henk Corporaal

Dept. of Electrical Engineering, Electronic Systems Group
Eindhoven University of Technology, The Netherlands
{g.j.w.v.d.braak, h.corporaal}@tue.nl

ABSTRACT

GPUs have evolved to programmable, energy efficient com-
pute accelerators for massively parallel applications. Still,
compute power is lost in many applications because of cy-
cles spent on data movement and control instead of compu-
tations on actual data. Additional cycles can be lost as well
on pipeline stalls due to long latency operations.

To improve performance and energy efficiency, we intro-
duce GPU-CC: a reconfigurable GPU architecture with com-
municating cores. It is based on a contemporary GPU, which
can still be used as such, but also has the ability to reorga-
nize the cores of a GPU in a reconfigurable network. In
GPU-CC data movement and control is implicit in the con-
figuration of the communication network. Additionally each
core executes a fixed instruction, reducing instruction de-
code count and increasing energy efficiency. We show a large
performance potential for GPU-CC, e.g. 1.9x and 2.4x for
a 3x3 and 5x5 convolution application. The hardware cost
of GPU-CC is mainly determined by the buffers in the added
network, which amounts to 12.4% of extra memory space.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures

General Terms

Design, Performance

Keywords
GPGPU, reconfigurable architecture

1. INTRODUCTION

Single core performance growth halted in 2004 [2] with
processors reaching their power consumption limit. Pro-
cessors became multi-cores and GPUs (Graphics Processing
Units) started to appear as energy efficient compute acceler-
ators. Nowadays GPUs are used in numerous fields of appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCOPES 13, June 19-21, 2013, St. Goar, Germany

Copyright 2013 ACM 978-1-4503-2142-6/13/06 ...$15.00.

DISPATCH UNIT

DISPATCH UNIT

| WARP SCHEDULER || WARP SCHEDULER |

Figure 1: Streaming multiprocessor (SM) design of
an NVIDIA Fermi GPU.

cation other than graphics, such as electronic design automa-
tion, medical imaging, and signal processing. Programmable
GPUs can not only be found in desktop computers, but also
in mobile devices such as tablets and in supercomputers,
having in common the need for a large amount of energy
efficient compute power.

GPUs spend most of their hardware on many small (but
heavily pipelined) ‘cores’, with no branch prediction, no
speculative execution and only small caches. Instructions
are issued in SIMD-style vectors, and latency is hidden by
concurrently executing many independent vectors, resulting
in a high-performance energy efficient SIMT architecture.

The number of cores on GPGPUs have increased from
just over a hundred in 2006 [5] to thousands in 2013 [9],
an increase of 21X in just 6.5 years. In the same period
performance (GFLOPS) has increased ‘only’ 9%, and energy
efficiency (GFLOPS/W) by a mere 5x. Also power consump-
tion (TDP) has reached a ceiling of 250W since 2008, and
at the same time clock frequency diminishes. This together
reveals a trend in which more parallelism by more cores is
preferred over clock frequency, i.e. more hardware is spent
in order to increase performance and energy efficiency.

Simply adding more cores to a GPU does not result in
an equivalent increase in performance or energy efficiency.
Moreover, GPUs spend many cycles on data movement and
control. In this work we propose an extension to the current
GPU architecture in which the cores in an SM can be con-
figured in a network with direct communication, creating
a spatial computing architecture. Furthermore, each core
executes a fixed instruction, reducing instruction fetch and
decode count significantly. Data movement and control of an
application is made implicit in the network, freeing up the
cores for computations on actual data. By better utilizing
the available cores, this results in increased performance and
energy efficiency, while it only adds a relative small amount
of hardware and preserves the original GPU functionality.

int 00T OOE TROTR 0 TR O OO0 TOMOOO LT L
float

Id/st

time
(a) Naive 3x3 convolution kernel

int [LR N R
float

Id/st

time
(b) Optimized 3x3 convolution kernel

Figure 2: SM activity over time for (a) a naive and
(b) an optimized kernel. The activity is split in in-
teger, floating point and load-store operations.

Section 2 presents a brief overview of a modern day GPU
architecture. The proposed GPU-CC architecture is intro-
duced in Section 3. In Section 4 we show the benefits of
this architecture over the normal GPU architecture in a 2D
convolution application. The paper ends with related work
in Section 5 and conclusions and future work in Section 6.

2. BACKGROUND AND MOTIVATION

NVIDIA’s Fermi GPU architecture [8] consists of multiple
independent streaming multiprocessors (SM), sharing an off-
chip memory. Each SM has a private instruction and data
cache, a scratchpad (shared) memory, 32 cores, 16 load-store
units, 4 special function units and two schedulers, see Fig. 1.

GPUs are programmed in an explicitly data-parallel lan-
guage such as CUDA or OpenCL. The programmer writes
code for a single thread, specifies how many threads have
to be invoked and groups these threads in blocks, as only
threads within a block can synchronize and share data via
the shared memory.

As an example, consider the activity graph in Fig. 2 of
an SM executing a 2D convolution kernel (see also Sec-
tion 4). The SM’s activity is split in three groups: (1) inte-
ger instructions representing address calculations and con-
trol operations, (2) floating point instructions on actual data
and (3) load and store operations. Both the naive version
(Fig. 2a) and the optimized version (Fig. 2b) start with ad-
dress calculations, after which load instructions are issued.
After an idle period the data arrives from the off-chip mem-
ory and floating point instructions are issued. The optimized
kernel shows fewer load operations (and corresponding ad-
dress calculations) than the naive implementation, due to
the caching of data elements in registers (see Section 4.1).

Although the kernel in Fig. 2b is optimized and mini-
mizes the number of memory loads, there are still idle cycles
where the SM is stalled waiting for data, despite of the many
threads it is executing to hide latency. Furthermore, a lot
of cycles are spent on address calculations and load instruc-
tions rather than calculations on actual data. In 64% of the
clock cycles at least one of the two schedulers in the SM is
idle. Of the executed instructions 34% is used for floating
point instructions on actual data, resulting in only 12% of
the possible executed instructions over the duration of the
kernel being spent on computations on actual data.

3. GPU-CC ARCHITECTURE

To better utilize the available cores in the GPU, we pro-
pose the GPU-CC architecture, which allows the cores in an
SM to be configured in a network with direct communica-

tion, creating a spatial computing architecture. By moving
data directly from one core to the next, data movement and
control is made implicit in the network and instruction count
can be reduced. Furthermore, each core is assigned one fixed
instruction which it will execute during the whole kernel ex-
ecution time. It is stored in a local configuration register
and has to be loaded only once.

The standard GPU architecture is preserved, and no hard-
ware blocks are removed. Hereby backwards compatibility
for current GPU programs is assured, and programs which
do not benefit of the GPU-CC architecture can use the stan-
dard GPU architecture as is. Only configuration registers
and a communication network with FIFO buffers is added.
The programmer can switch between the GPU’s standard
and GPU-CC architecture at run-time and specifies each
core’s GPU-CC instruction and connections in assembly by
hand. We plan compiler support for future work.

The cores in an SM in the GPU-CC architecture are con-
nected to each other via a communication network with
FIFO buffers, as shown in Fig. 3. Via five data lanes, named
A to E, cores can send data to each other’s FIFOs. By pass-
ing data directly, the register file is not required and can
be switched off. The multiplexers in the network are con-
trolled by the configuration registers, creating a static circuit
switched network for the duration of a kernel’s execution.

In GPU-CC the register file and instruction fetch and de-
code units are switched off. According to the Integrated
Power and Performance model of Hong and Kim [3] 12% of
the power consumption of a GPU comes from these parts.
Presumably more power is saved because cores execute a
fixed instruction in GPU-CC, and not a mix of (integer and
floating point) instructions. The power used by the com-
munication network is expected to be low compared to the
register file’s power consumption, as it is smaller in memory
size (see below) and consists of simple FIFO buffers instead
of a multi-bank memory system with operand collectors. In
GPU-CC not all cores are used in every application, which
means some cores can be disabled saving more power.

Each core has three input FIFOs, as a core can execute
instructions with (up to) three input operands. The load-
store units have two input FIFOs, one for the address and
one for the data in case of a store. All FIFOs have a size of
16 elements, only the address FIFO for the load-store units
is 256 elements. These sizes are empirically determined, in
future work we plan a more detailed evaluation.

Cores are triggered to execute an instruction when all in-
put FIFOs have a data element available and when all FIFOs
of the receiving cores have space available. The latency of a
load operation in a load-store unit can be very long in case
of a cache miss. The load-store unit only removes an item
from its FIFO if the operation has completed. Therefore the
input FIFO for the addresses is made (much) larger. The
load-store unit has been equipped with a new prefetch el-
ement, which scans the address FIFO. When it detects an
address with a new cache line address, it generates a mem-
ory request to fill the L1 cache with the corresponding cache
line. This way the load-store units’ following load operations
will hit in the L1 cache, resulting in minimal stall cycles.

The main hardware costs of the GPU-CC architecture
are the configuration registers and FIFO buffers. Each of
the 32 cores has a configuration register and three 16 ele-
ment FIFOs. Each of the load-store units also has an in-
struction cache, one 256 element and one 16 element FIFO.

————— LbIsT

=

M JN 3N
e 2 3 2 4
: i) L 8
“c D 2D =D P
b ! i Q! ;EF
- i e
€ B s B -
| l A [| A [I] | 1 e
A v A v A 7 7 AR, yA v A v A ‘

Figure 3: Design of the GPU-CC architecture. Cores and load-store units communicate via FIFO buffers
and five data lanes named A to E. The single instruction each core executes is stored in a local configuration
register (CR). Only four of the 32 cores and two of the 16 load-store units in an SM are shown for clarity.

This brings the total costs of the GPU-CC architecture to
195 kbit of storage per SM. An SM contains a register file of
32768 32-bit entries and a 64 kB scratchpad memory / L1
cache, making this 195 kbit an increase in storage of 12.4%.
We note that multiple small FIFOs are more expensive in
area than one large memory.

4. USE CASE: 2D CONVOLUTION FILTER

Convolution is a common operation in image and signal
processing, among others. For example an image can be
blurred by a 2D convolution with a Gaussian kernel. In this
section we use a Gaussian filter to blur a 512x512 image.
A mathematical representation is given in Eq. 1, where [is
the input image and K the convolution kernel.

(U Ky = DD I +iy+ K@) (1)

First we show how a Gaussian filter is implemented on a
conventional GPU. Next we implement the same filter on
our proposed GPU-CC architecture. Finally we show the
performance improvements of the proposed architecture.

4.1 2D convolution on a GPU

Execution results of five different versions of the 2D convo-
lution kernel on an NVIDIA GTX 470 are shown in Table 1.

The Naive implementation reads nine input pixels and
writes one output pixel from/to off-chip memory. Threads
are organized in blocks of 16 by 16. This implementation
only exploits the possible locality of the input pixels within
the 16x16 block. In the other implementations, threads
are organized in a vector 512 long, matching the width of
the image. Since there are 14 SMs in the GPU used, each
thread block processes a chunk of 36 or 37 (512/14) lines in
the image, such that previously loaded lines can be re-used.
In the By line implementations this re-use is achieved by
relying on the L1 cache in each SM. In the Shared memory
implementations the re-use is manually managed by loading

rows of the image in the shared memory in the SM. The third
and fifth implementation (annotated with (R)) use an extra
level of re-use by keeping previously loaded lines in registers.
All of these implementations, except Naive, outperform the
NVIDIA CUDA SDK implementations of 2D convolution.

4.2 2D convolution using GPU-CC

The GPU-CC architecture as introduced in Section 3 is
implemented in GPGPU-Sim [1] version 3.1.2. The function
each core executes is shown in Fig. 4a. The 3x3 structure
of the convolution implemented here is visible in this figure.
The FMUL, FMAD and FADD cores perform the multiply and
add operations of the convolution. Two IADD cores are used
for calculating the input and output addresses. Three LD.F32
cores are used to load the input data from the off-chip mem-
ory via the L1 cache. The instructions of these cores contain
an immediate offset such that each load-store unit reads a
different line in the image. The ST.F32 is used to store the
output data. Fig. 4b shows how the cores can be placed in
the communication network. Four out of the five data lanes
are sufficient for the 2D convolution kernel.

Only 13 out of the 32 cores and 4 out of the 16 load-store
units in each SM are used in the configuration of Fig. 4.
This makes it possible to instantiate two copies of this con-
figuration in each SM in order to improving performance.

4.3 Experimental results

The GPU implementation (By line (R)) of the 3x3 convo-
lution has a performance of 7.8 Gpixels/s. GPU-CC achieves
a speed-up of 1.9x with a performance of 14.8 Gpixels/s.
Considering each input and output pixel has to be trans-
fered at least once, GPU-CC reaches 89% of the peak off-
chip memory bandwidth. For a 5x5 convolution kernel the
GPU-CC architecture attains a speed-up of 2.4x compared
to an optimized implementation on a conventional GPU.

In the standard GPU implementation a total number of
220 thousand instructions are fetched, decoded and issued to

Rl N T

([T} LD.F32

{1} LD.F32

(a) functional implementation

g
s
e
il
'&
|
'&

(b) communication layout

Figure 4: Functional implementation (a) and com-
munication layout (b) for a 3x3 2D convolution ker-
nel in GPU-CC.

process the image of 512x 512 pixels. The GPU-CC architec-
ture uses 13 cores and 4 load-store units in the configuration
of Fig. 4. Two copies of this configuration are instantiated
on each SM, of which there are 14 on an NVIDIA GTX 470,
making the total fetched instruction count as low as 476.

5. RELATED WORK

Reconfigurable architectures have been described in litera-
ture long before the introduction of GPGPUs. One example
is the MorphoSys architecture [10], which consists of a main
processor (RISC) and a reconfigurable processor array con-
nected together via a bus. Another example is the ADRES
architecture [6] which combines a main processor (VLIW)
with a matrix of reconfigurable cells. The main processor
and the reconfigurable array are separate hardware parts
in the MorphoSys architecture. In the ADRES architec-
ture several functional units of the reconfigurable matrix are
shared with the VLIW processor, which reduces communi-
cation costs. As a result the ADRES architecture has two
functional views, either the VLIW processor or the recon-
figurable matrix is executing instructions. In our proposed
architecture all resources are shared between the standard
GPU mode and the proposed GPU-CC mode, keeping the
original GPU functionality intact which is also used to setup
the GPU-CC mode.

Two-level warp scheduling [7] reduces stall cycles due to
long latency operations, just as GPU-CC’s prefetch element
in the load-store unit. Two-level warp scheduling issues in-
structions from a limited number of threads, just enough
to hide the pipeline latency, until a long latency operation
(e.g. off-chip memory load) is encountered, after which the
instructions from other threads are executed.

6. CONCLUSIONS & FUTURE WORK

In this paper we proposed the GPU-CC architecture, ad-
ding an extra mode of computation to contemporary GPU
architectures to better utilize its computational resources.
By configuring the cores of a GPU in a network with direct

Table 1: Performance of five versions of 2D convo-
lution (3x3) for a 512x512 image on an NVIDIA
GTX 470 and on the GPU-CC architecture.

Version Performance Speed-up
Naive 3.5 Gpixels/s 1.0
By line 6.4 Gpixels/s 1.8
By line (R) 7.8 Gpixels/s 2.2
Shared memory 4.7 Gpixels/s 1.3
Shared memory (R) 4.7 Gpixels/s 1.3
GPU-CC 14.8 Gpixels/s 4.2

communication, performance is improved (1.9x and 2.4x
for the 3x3 and 5x5 convolution example) while instruction
fetch and decode count is reduced significantly, resulting in
a reduced power consumption of an estimated 12%, at the
cost of an extra 12.4% of memory space on the GPU.

In future work we plan a more thorough analysis of the
FIFO buffer sizes, the number of data lanes and possibly
other interconnect topologies for the GPU-CC architecture.
We also plan to quantify the energy consumption benefits us-
ing GPGPU-Sim’s power model [4]. Furthermore, we plan to
improve the programmability and experiment with a range
of applications, including applications which require more
instructions than the number of cores available.

7. REFERENCES

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and
T. Aamodt. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. In ISPASS, 2009.

[2] S. Fuller and L. Millett. Computing Performance:
Game Over or Next Level? IEEE Computer,
44(1):31-38, 2011,

[3] S. Hong and H. Kim. An Integrated GPU Power and
Performance Model. In ISCA-37, 2010.

[4] J. Leng, S. Gilani, T. Hetherington, A. ElTantawy,
N. S. Kim, T. M. Aamodt, and V. J. Reddi.
GPUWattch: Enabling Energy Optimizations in
GPGPUs. In To appear in proc. of ISCA-40, 2013.

[5] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro, 28(2), 2008.

[6] B. Mei, S. Vernalde, D. Verkest, H. Man, and
R. Lauwereins. ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix. In Field Programmable Logic
and Application, volume 2778 of LNCS. 2003.

[7] V. Narasiman, M. Shebanow, C. J. Lee,

R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.
Improving GPU Performance via Large Warps and
Two-Level Warp Scheduling. In Micro-44, 2011.

[8] NVIDIA Corporation. NVIDIA’s Next Generation
CUDA Compute Architecture: Fermi, 2009.

[9] NVIDIA Corporation. NVIDIA’s Next Generation
CUDA Compute Architecture: Kepler GK110, 2012.

[10] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi,
N. Bagherzadeh, and E. Chaves Filho. MorphoSys: An
Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications. IEEE
Transactions on Computers, 49(5), 2000.

