
Efficiency Optimization of Trainable Feature
Extractors for a Consumer Platform

Maurice Peemen, Bart Mesman and Henk Corporaal

Eindhoven University of Technology, The Netherlands
m.c.j.peemen@tue.nl

Abstract. This paper proposes an algorithmic optimization for the fea-
ture extractors of biologically inspired Convolutional Neural Networks
(CNNs). CNNs are successfully used for different visual pattern recogni-
tion applications such as OCR, face detection and object classification.
These applications require complex networks exceeding 100,000 inter-
connected computational nodes. To reduce the computational complex-
ity a modified algorithm is proposed; real benchmarks show 65 - 83%
reduction, with equal or even better recognition accuracy. Exploiting
the available parallelism in CNNs is essential to reduce the computa-
tional scaling problems. Therefore the modified version of the algorithm
is implemented and evaluated on a GPU platform to demonstrate the
suitability on a cost effective parallel platform. A speedup of 2.5x with
respect to the standard algorithm is achieved.

Keywords: Convolutional Neural Networks, Feature Extraction, GPU.

1 Introduction

Visual object recognition is a computationally demanding task that will be used
in many future applications. An example is surveillance, for which multiple hu-
man faces have to be detected, recognized and tracked from a video stream. The
classical approach to achieve visual object recognition using a computer is to
split the task into two distinct steps [9]: feature extraction and classification.
During the first step, the original input is typically preprocessed to extract only
relevant information. Classification with only the relevant information makes the
problem easier to solve and the result becomes invariant to external sources like
light conditions that are not supposed to influence the classification. Classical
approaches use matching algorithms for classification. These compute the dif-
ference between the feature vector and a stored pattern to distinguish different
object classes. To construct a pattern which gives robust results is a very difficult
task. Therefore, it is desirable to train a classifier for a certain task by using a
labeled set of examples.

Convolutional Neural Networks (CNNs) are fully trainable pattern recogni-
tion models that exploit the benefits of two step classification by using feature
extraction [7]. CNN models are based on Artificial Neural Networks (ANNs) [4]
but their network structure is inspired by the visual perception of the human

input

32 x 32

feature maps

28 x 28

5x5

convolution

2x2

subsampling

feature maps

14 x 14

feature maps

10 x 10

feature maps

5 x 5

5x5

convolution 2x2

subsampling

fully

connected

C1 S1 C2 S2 n1 n2

output

feature extraction classification

0
1

8
9

Fig. 1. An Example CNN architecture for a handwritten digit recognition task.

brain. The network architecture of an example CNN is depicted in Fig. 1. The
processing starts with feature extraction layers and is finished by fully connected
ANN classification layers. Using different layers delivers robust recognition ac-
curacy and is invariant to small geometric transformations of the input images.
The robust recognition accuracy makes that CNN are successfully used for clas-
sification tasks on real world data [3][7][14].

It is a challenge to implement these CNNs for real-time recognition; this is
due their large computational workload, especially on high resolution images.
Consider for example the results that are published for face recognition applica-
tions on programmable architectures (see Table 1). These results not yet meet
real-time requirements, and assume a relative low resolution. To reach recog-
nition results with 20 frames per second for 1280x720 HD video streams the
processing speed must be improved considerably. The processing problem gets
even worse when the implementation platform is a low cost consumer platform
as used in smart phones. So a more efficient algorithm is needed.

The contribution of this work is a modified CNN architecture to reduce the
computational workload and data transfer. Training rules for the modified ar-
chitecture are derived and the recognition accuracy is evaluated with two real
world benchmarks. An Intel CPU and an Nvidia CUDA-enabled Graphics Pro-
cessing Unit (GPU) are used to demonstrate the performance improvement of
the modified feature extraction layers.

The content of the paper is as follows. Section 2 contains an overview of the
CNN model introduced in [6]. Section 3 describes the algorithmic optimization
and training rules are derived. In Section 4, the recognition accuracy is evaluated.
Section 5 describes the mapping of the feature extractors and the speedup of the
modification is evaluated. Section 6 describes related work and in Section 7, the
paper is summarized and concluded.

Table 1. Frame rate for a face recognition CNN on three programmable platforms.

platform input pixels frames per second

1.6 GHz Intel Pentium IV [3] 384x288 4.0
2.33 GHz 8-core Intel Xeon [1] 640x480 7.4
128-Core GPU Nvidia Tesla C870 [1] 640x480 9.5

2 CNN Algorithm Overview

An example architecture of a CNN is shown in Fig. 1. This one is used for
handwritten digit recognition [7]. The last two layers n1 and n2 function as
an ANN classifier. The first layers of the network C1 up to S2 function as a
trainable feature extractor. These are ANN layers with specific constrains to
extract position invariant features from two-dimensional shapes. The different
layers in this architecture can be described by:

1) Convolution Layers (CLs): The feature maps of CLs, such as C1 and C2 in
Fig. 1, contain neurons that take their synaptic inputs from a local receptive field,
thereby detecting local features. The weights of neurons in a feature map are
shared, so the exact position of the local feature becomes less important, thereby
yielding shift invariance. The schematic overview of a convolution neuron for a
one-dimensional input is shown in Fig. 2(a). The schematic shows the names for
the different variables, x for the input window, v for the shared trainable kernel
weights and b for the trainable bias value. The inputs are used to compute a
weighted sum with kernel size K ; this is represented as the neuron potential p. To
generate an output value y, the potential value is passed through an activation
function φ(p). For a two-dimensional feature map the model is rewritten, and
the neuron operation can be described by

y[m,n] = φ(p) = φ(b+

K−1∑
k=0

K−1∑
l=0

v[k, l]x[m+ k, n+ l]) (1)

where,

φ(x) =
1

1 + exp(−x)
. (2)

The sigmoid activation function of (2) is used in this work, but many other
functions can be used [4]. The kernel operation is a two-dimensional convolution
on the valid region of the input. This 2d-convolution is done multiple times with
different kernels to generate multiple feature maps that are specialized to extract
different features. Some of these feature maps as in layer C2 of Fig. 1 are fed by
multiple inputs, in this case multiple kernels are used, one for each input and
the results are summed.

x[n+0]

x[n+1]

x[n+K-1]
b

v[0]

v[1]

v[K-1]

Σ
p

φ(p) y[n]
k=0

K-1

(a) CL

x[nS+0]

x[nS+1]

x[nS+S-1]
b

u

u

u

Σ
p

φ(p) y[n]
k=0

S-1

(b) SL

x[0]

x[1]

x[K-1]
b[n]

w[n,0]

w[n,1]

w[n,K-1]
Σ

p
φ(p) y[n]

k=0

K-1

(c) NL

Fig. 2. Schematic models of different neuron types in a CNN. (a) Convolution Layer
(CL) neuron. (b) Subsample Layer (SL) neuron. (c) Neuron Layer (NL) neuron.

2) Subsampling Layers (SLs): A CL is succeeded by a SL to carry out a
data reduction operation of the CL output. The data reduction operation is
done by local averaging over a predefined, non-overlapping window; the size is
described by the subsample factor S. The result of local averaging is multiplied
by a shared trainable coefficient u and a shared bias coefficient is added to
the result before it is passed through the activation function. The schematic
model of a one-dimensional subsampling neuron is depicted in Fig. 2(b). The
mathematical model of a two-dimensional feature map gives

y[m,n] = φ(p) = φ(b+ u

S−1∑
k=0

S−1∑
l=0

x[mS + k, nS + l]). (3)

3) Neuron Layers (NLs): The output layers of a CNN such as n1 and n2

in Fig. 1 contain classical neuron models or perceptrons [4]. The perceptron
model that is depicted in Fig. 2(c) has a unique set of weights w and bias b for
each neuron. With the unique set of weights each neuron can detect a different
pattern; this is used to make the final classification. In most NLs the result of
the preceding layer is used as a one-dimensional fully connected input. When K
equals the number of neurons in the preceding layer the expression to compute
the NL output is given as

y[n] = φ(p) = φ(b[n] +

K−1∑
k=0

w[n, k]x[k]). (4)

An important property of the CNN architecture is that all synaptic weights
and bias values can be trained by cycling the simple and efficient stochastic mode
of the error back-propagation algorithm through the training sample [7].

3 Algorithm Optimization

As is shown in Section 1 the high computational complexity of CNNs restricts
their applications to high performance computer architectures. To enable CNN
applications for cheap consumer platforms a reduction of the computational
workload would be very desirable. This reduction is achieved by a high level
modification that reduces the number of Multiply Accumulate (MACC) oper-
ations and the amount of data movement in the feature extractor. High level
modifications to an algorithm can have a huge impact on performance, but in
most cases it is a trade-off between recognition accuracy and computational com-
plexity. Therefore changes in the algorithm must be analyzed carefully to verify
that the classifier does not lose the learning and classification abilities it had
before. To analyze the recognition performance new training rules are derived
and two real world benchmarks are used to validate the recognition performance.

3.1 Merge Convolution and Subsampling

The data dependencies between a CL and a SL; as depicted in Fig. 3 show that
the SL output can be calculated directly from the input. Therefore the succeeding

input

X

subsample

Y

convolution

C

S2·K2

kernel

(K+S-1)2

kernel

S2

kernel

Fig. 3. Feature extraction layer example with 2d-convolution kernel size K =3 and
subsample factor S=2, data dependencies are visualized from input to CL and SL. For
the merged method of operation there is no need for a middle CL.

operations are merged; this is only possible if the activation function of the CL
is linear. The merged expression with corresponding coefficients is derived by
substitution of the CL expression (1) with a linear activation function into the
SL expression (3).

y[m,n] = φs(bs + u

S−1∑
i=0

S−1∑
j=0

c[mS + i, nS + j])

=φs(bs + u

S−1∑
i=0

S−1∑
j=0

φc(bc +

K−1∑
k=0

K−1∑
l=0

v[k, l]x[mS + i+ k, nS + j + l]))

= φ̃(b̃+

K+S−2∑
k=0

K+S−2∑
l=0

ṽ[k, l]x[mS + k, nS + l])

(5)

The enlarged kernel ṽ is constructed from all coefficients that are multiplied with
each input value x. The new bias b̃ is the CL bias multiplied by u and added
to the SL bias. From Fig. 3 and (5) is concluded that merging a linear CL and
a SL result in a reduction of MACC operations while retaining the functional
correctness. With the significant reduction of MACC operations the number of
memory accesses is also reduced because there is no intermediate storage of a CL.
Table 2 shows expressions for the number of kernel weights, MACC operations
and memory accesses that are required to calculate a feature map output. The
reduction of MACC operations for multiple merged CL and SL configurations is
depicted in Fig. 4.

Table 2. For a feature map output the required number of weights, MACC operations
and memory accesses depend on kernel size K and subsample factor S.

feature extractor # kernel weights # MACC operations # mem. accesses

CL and SL K2 + 1 S2(K2 + 1) S2(K2 + 2) + 1
merged (K + S − 1)2 (K + S − 1)2 (K + S − 1)2 + 1

2 3 4 5 6 7
8 9

2

3

4

69%

78%

82%
85% 86% 88% 88% 89%

64%

72%

76%
79% 81% 82% 83% 84%

55%

60%
63%

65% 67% 68% 69% 70%

50%

55%

60%

65%

70%

75%

80%

85%

90%

re
d

u
ct

io
n

 #
M

A
C

C

K

S

Fig. 4. Reduction of the #MACC operations to calculate a merged feature map com-
pared to the original algorithm for multiple kernel sizes K and subsample factors S.

It is not possible to derive the coefficients of ṽ and b̃ if a non-linear activation
function is used in the CL. This is not a problem; the learning algorithm is
adapted such that it can train the coefficients for the merged configuration.
After merging the CL and SL the weight space is changed; therefore training
could find better solutions in the weight space which makes derivation from the
old weight space suboptimal. The recognition performance of such a trained
kernel is evaluated in Section 4.

During the remaining part of this paper the merged configuration is used. The
merged layers are named Feature Extraction Layers (FELs). For completeness
the expression is given for a variable number of input feature maps,

y[m,n] = φ(b+
∑
q∈Q

K−1∑
k=0

K−1∑
l=0

vq[k, l]xq[mS + k, nS + l]). (6)

As depicted in Fig. 5(a) the number of input feature maps can vary for each
feature map. The set Q in (6) contains the indices of the connected input feature
maps. The constant K describes the new kernel size and S describes the step
size of the input window on an input feature map as depicted in Fig. 5(b).

input X0

Y0
1

Y1
1

Y0
2

Y1
2

Y2
2

Y3
2

y
3

y
4

unique

weights

unique

weights

(a)

X

y[m,n]

S K

v[k,l]

input kernel output

(b)

Fig. 5. Variables and indices required for feed-forward computation. (a) Feature map
naming with connections. (b) Variables for computation of feature map neurons.

3.2 Training with Error Back-Propagation

The training algorithm that is used to learn the coefficients of the merged FELs
is the on-line mode of error back-propagation [12]. The derivation of the training
rules is described in detail because the merged FELs change the published CNN
training expressions [7]. The new contributions to the training procedure are the
steps involving the merged FELs.

The basic idea of error back-propagation is to calculate the partial derivatives
of the output error in function of the weights for a given input pattern. The
partial derivatives are used to perform small corrections to the weights to the
negative direction of the error derivative. This procedure is split into three parts;
feed-forward processing, compute partial derivatives and update the weights. For
clarity the network depicted in Fig. 5(a) is used to explain the training procedure.

1) Feed-forward processing: Before training all weights are initialized to a
small random value. Then a pattern of the training sample is processed in feed-
forward mode through the FELs (6) and the NLs (4). The feed-forward propa-
gation results in an output vector that is compared with the desired output in
the cross-entropy (CE) error-function [5],

ECE = −
∑
n∈N

dn log(yn) + (1− dn) log(1− yn). (7)

In (7) the set N contains all output neuron indices and dn the target values.
2) Compute partial derivatives: In the previous expressions x is used as in-

put and y as output, for the error derivatives more variables are required. The
remaining expressions use λ to describe in which layer variables are positioned.
The partial derivatives are found by applying the chain rule on the CE error
function of (7), which results in

∂ECE
∂wλn[k]

=
∂ECE
∂yλn

∂yλn
∂pλn

∂pλn
∂wλn[k]

=
yλn − dn
yλn(1− yλn)

φ̇(pλn)yλ−1k

= δλny
λ−1
k

(8)

where,
φ̇(x) = φ(x)(1− φ(x)) = yn(1− yn), (9)

δ =
∂ECE
∂y

∂y

∂p
. (10)

Efficient computation of the partial derivatives for NLs that are not positioned
at the output is performed by reusing the local gradient δ of the succeeding layer.

∂ECE

∂wλ−1n [k]
=

∑
i∈D

∂ECE
∂yλi

∂yλi
∂pλi

∂pλi
∂yλ−1n

∂yλ−1n

∂pλ−1n

∂pλ−1n

∂wλ−1n [k]

=
∑
i∈D

δλi w
λ
i [n]yλ−1n (1− yλ−1n)yλ−2k

= δλ−1n yλ−2k

(11)

The set D in (11) contains all neurons of the succeeding layer that are connected
to neuron yλ−1n or y3n in Fig. 5(a). To compute the partial derivatives for multiple
NLs (11) is used recursively.

The calculation of the gradients for weights in the FELs is done in two steps.
First the local gradients are computed by back-propagation from the succeeding
layer. Second the local gradients are used to compute the gradients of the weights.
Computation of the local gradients for an FELs succeeded by an NL such as for
y2 in Fig. 5(a) is expressed as

δλ[m,n] =
∑
i∈D

δλ+1
i wλ+1

i [m,n]φ̇(pλ[m,n]). (12)

If the succeeding layer is an FEL a select set of neurons is connected which
makes computation of the local gradients complex. The connection pattern is
influenced by the current neuron indices, the subsample factor and the kernel
size as depicted in Fig. 6. For the two-dimensional case the local gradient is

δλ[m,n] =
∑
q∈Q

Kmax∑
k=Kmin

Lmax∑
l=Lmin

(δλ+1
q [k, l]vλ+1

q [m− Sk, n− Sl]φ̇(pλ[m,n])) (13)

where,

Kmax = bm
S
c, Kmin = bm−K + S

S
c, Lmax = bn

S
c, Lmin = bn−K + S

S
c.

Border effects restrict Kmin, Kmax, Lmin and Lmax to the featuremap indices.
The obtained local gradients are used to compute the gradients of the FEL

coefficients. The bias is connected to all neurons in a feature map therefore the
gradient is computed by summation over the local gradients in a feature map.

∂ECE
∂b

=

M∑
m=0

N∑
n=0

δ[m,n] (14)

The gradients for the kernel weights of a FEL are computed by

∂ECE
∂vλ[k, l]

=

M∑
m=0

N∑
n=0

δλ[m,n]yλ−1[mS + k, nS + l]. (15)

3) Update the coefficients of the network: The delta rule of the error back-
propagation algorithm is used to keep the training algorithm simple and easy to
reproduce with η as single learning parameter. The update function is given as

Wnew = Wold − η
∂ECE
∂Wold

. (16)

In the update function (16) W represent the weights w, kernels v and bias b for
all possible indices in the network.

δλ[n] 0 1 2 3 4 5

0 1

 6 7

2

vλ+1[n-Sk]

δλ+1[k]

y
λ

y
λ+1

Fig. 6. Two one dimensional FELs with K=4 and S=2. To compute the local error
gradient the error is back-propagated from the succeeding layer.

4 Validate the Recognition Performance

Evaluation of the recognition performance of the merged feature extractors is
performed by a training task on two published datasets. The availability of pub-
lished training results for CNN implementations is the main motivation to use
these datasets for a fair comparison.

The first training task is performed on the MNIST handwritten digit data-
set [7]. This dataset consist of 28x28 pixel images of handwritten digits as shown
in Fig. 7(a). For evaluation of feature extraction based on separated or merged
CLs and SLs, a MATLAB implementation of a CNN based on LeNet-5 [7] is
trained for both configurations. For fair training and testing the original separa-
tion of the MNIST data into 60,000 training and 10,000 test samples is used. The
classification performance is expressed as the percentage of the test set that is
misclassified. Classification of a pattern of the test set is performed by selecting
the output neuron that is activated the most (winner takes all). These outputs
represent the digits zero to nine. The classification score for the original and the
merged network for the MNIST dataset is summarized in Table 3.

The second dataset is the small-NORB stereoscopic object classification data-
set [8]. This dataset consists of 96x96 pixel image pairs which belong to one of five
object classes; a subset is shown in Fig. 7(b). The dataset contains 50 different
objects, 25 for training and 25 for testing which are equally distributed over the
five classes. These objects are shown from different angles and with different
lightning conditions, which makes that each set consist of 24,300 image pairs.
For comparison of the recognition performance, implementations with separated
or merged CLs and SLs which are based on the LeNet-7 [8] are trained. The
classification scores for the small-NORB dataset are also shown in Table 3.

(a) MNIST (b) small-NORB

Fig. 7. Subset of the visual patterns that are used for training.

Table 3. Comparison of the training results for MNIST and NORB data set.

benchmark misclassification # MACC ops. # coefficients FELs

MNIST LeNet-5 [7] 0.82% 281,784 1,716
separated CLs and SLs 0.78% 281,784 1,716
merged CLs and SLs 0.71% 97,912 2,398
reduction 8.97% 65% -40%

NORB LeNet-7 [8] 6.6% 3,815,016 3,852
separated CLs and SLs 6.0% 3,815,016 3,852
merged CLs and SLs 6.0% 632,552 6,944
reduction 0% 83% -80%

Important to conclude from the results of the experiments is that merging
the convolution and subsample layers of the feature extractor do not negatively
influence the networks ability to generalize. The number of MACC operation to
do feed-forward detection is significantly reduced. As mentioned before there is
also a non-favorable property, this is the increase of the number of coefficients
which is due to the increased kernel sizes as described in Section 3.1. The net-
works that are implemented for this experiment do not need extra preprocessing
of input patterns, such as mean removal. The training procedures used in [7] and
[8] use this extra preprocessing on the input data to improve recognition results.

5 Implementation

Demonstration of the recognition speedup as result of merged FELs is performed
with a real application. The application is an internally developed implementa-
tion of a road sign detection and classification CNN [11]. The CNN is build with
merged FELs and with separated CLs and SLs to compare the processing speed.
Both CNNs are trained to classify road signs on a 1280x720 HD input image.

First a C implementation of the two feature extractor configurations are exe-
cuted on a 2.66 GHz Core-i5 M580 platform as a reference. The implementation
is optimized to exploit data locality by loop interchanges. Compilation of the
code is done with MS Visual Studio 2010, all compiler flags are set to optimize
for execution speed. The timing results for the two feature extractors are shown
in the first column of Table 4. The speedup of a factor 2.8x after merging matches
the expectation. In Fig. 4 is shown that the workload of the feature extractor
with kernel size K = 5 and subsample factor S = 2 is reduced with 65%.

Table 4. Timing comparison of the FELs for the standard and the merged configura-
tion.

configuration CPU GPU speedup

CLs and SLs 577 ms 6.72 ms 86 x
merged FELs 203 ms 2.71 ms 75 x
speedup 2.84 x 2.48 x

The processing in the feature extractor contains a huge amount of paral-
lelism. A cost effective platform to exploit parallelism is a GPU. Therefore the
standard and the merged feature extractors are mapped to a GPU platform to
test the impact of the proposed optimization on a parallel implementation. The
platform that is used for the experiment is an Nvidia GTX460. First the GPU
implementation is optimized to improve data locality by loop interchange and
tiling. Second GPU specific optimizations described in the CUDA programming
guide [10] are applied. Memory accesses to the images are grouped to have co-
alesced memory accesses and the used kernel coefficients are stored in the fast
constant memory. As final optimization the non-linear sigmoid activation func-
tion is evaluated fast using the special function units of the GPU. The following
intrinsics from the CUDA programming guide are used to perform a fast but
less accurate evaluation of the sigmoid activation function.

__fdividef(1,1+__expf(-x));

The kernel execution times for the two GPU implementations are shown in
Table 4. The GPU speedup after merging is close to the CPU speedup, this
shows that the performance gain of merging is not reduced much due to a parallel
implementation.

6 Related work

Acceleration of CNNs is not a new field of research. Since a few years the first
dedicated hardware implementations of CNNs for FPGA platforms are pub-
lished in [1] and [2]. These implementations are based on hand crafted systolic
implementations of the convolution operation to speed up execution time. Non
of these implementations explore high level trade-offs to the CNN algorithm.

A different simplified CNN is given in [13]. Instead of averaging with sub-
sampling using (3), they only calculate convolution outputs for S2 pixels. This
also reduces computational complexity, but likely at a severe recognition quality
loss. However the paper does not report on this. Furthermore, the work in [13]
differs from this work because no analysis is published that shows how kernel size
K and subsample factor S influence the reduction of computational complexity.
Performance measurements of the simplified algorithm on real platforms such as
a GPU are not published.

7 Conclusion

In this work a high level algorithm modification is proposed to reduce the com-
putational workload of the trainable feature extractors of a CNN. The learning
abilities of the modified algorithm are not decreased; this is verified with real
world benchmarks. These benchmarks show that the modification results in a
reduction of 65-83% for the required number of MACC operations in the feature
extraction stages.

To measure the real speedup that is gained by the algorithm modification;
an implementation of a road sign classification system is performed. This ap-
plication is mapped to a CPU and a GPU platform. The speedup of the CPU
implementation is a factor 2.7 where the GPU implementation gains a factor 2.5,
compared to the original convolution and subsample feature extractor. These
speedups on real platforms prove that the proposed modification is suitable for
parallel implementation.

The modifications that are proposed in this paper enable implementations of
CNNs on low cost resource constrained consumer devices. This enables a legacy
of applications that use trainable vision systems on mobile low-cost devices such
as smartphones or smart cameras.

References

1. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S.: A dynamically config-
urable coprocessor for convolutional neural networks. In: ISCA ’10: Proceedings of
the 37th annual international symposium on Computer architecture. pp. 247–257.
ACM, New York, NY (2010)

2. Farabet, C., Poulet, C., Han, J., LeCun, Y.: Cnp: An fpga-based processor for
convolutional networks. Field Programmable Logic and Applications, 2009. FPL
2009. International Conference on pp. 32–37 (aug 2009)

3. Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast
and robust face detection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1408–
1423 (2004)

4. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, 3 edn. (2008)
5. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1-3), 185–234

(1989)
6. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,

Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

7. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (nov 1998)

8. Lecun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition
with invariance to pose and lighting. In: In Proceedings of CVPR04 (2004)

9. Nixon, M., Aguado, A.S.: Feature Extraction & Image Processing, Second Edition.
Academic Press, 2nd edn. (2008)

10. Nvidia: NVIDIA CUDA C Programming Guide 3.2. NVIDIA Corporation (2010)
11. Peemen, M., Mesman, B., Corporaal, C.: Speed sign detection and recognition by

convolutional neural networks. In: Proceedings of the 8th International Automotive
Congress. pp. 162–170 (2011)

12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, vol. 1. pp. 318–362. MIT Press, Cambridge, MA (1986)

13. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: ICDAR. pp. 958–962 (2003)

14. Szarvas, M., Yoshizawa, A., Yamamoto, M., Ogata, J.: Pedestrian detection with
convolutional neural networks. In: Proceedings IEEE Intelligent Vehicles Sympo-
sium. pp. 224–229. Las Vegas, NV (Jun 2005)

