
Fast Hough Transform on GPUs:
Exploration of Algorithm Trade-offs

Gert-Jan van den Braak, Cedric Nugteren, Bart Mesman, and Henk Corporaal
{g.j.w.v.d.braak, c.nugteren, b.mesman, h.corporaal}@tue.nl

Dept. of Electrical Engineering, Electronic Systems Group
Eindhoven University of Technology, The Netherlands

Abstract. The Hough transform is a commonly used algorithm to de-
tect lines and other features in images. It is robust to noise and occlusion,
but has a large computational cost. This paper introduces two new im-
plementations of the Hough transform for lines on a GPU. One focuses on
minimizing processing time, while the other has an input-data indepen-
dent processing time. Our results show that optimizing the GPU code
for speed can achieve a speed-up over naive GPU code of about 10×.
The implementation which focuses on processing speed is the faster one
for most images, but the implementation which achieves a constant pro-
cessing time is quicker for about 20% of the images.

1 Introduction

Computer vision applications are more and more used in every day life. For ex-
ample in industrial applications like traffic surveillance [2], but also in consumer
applications like the augmented reality applications on mobile phones [11]. De-
tecting shapes like lines and circles is an important and often computational
intensive part of these computer vision applications.

Since the end of 2006, with the release of “CUDA” by NVIDIA and “Close
to Metal” by AMD, Graphical Processing Units (GPUs) have become more pro-
grammable and more usable for other applications than computer graphics. Since
then, many computer vision applications have been implemented on GPUs [1].

The Hough transform is a popular technique to locate shapes in images. It is
mostly used to find straight lines and circles in images, but it can also be used to
detect arbitrary shapes. The Hough transform is a robust technique that works
well even in the presence of noise and occlusion. It is used in many computer
vision and image processing applications, like robot navigation [4], industrial
inspection and object recognition [14].

A complete application for detection shapes in images usually consists of sev-
eral steps: a) edge detection; b) thresholding; c) voting in Hough space; d) Hough
space post-processing; e) displaying detected lines. These steps are illustrated in
Fig. 3. In this paper we will only focus on the third step: voting in the Hough
space. The first step can be a convolution based edge detection, e.g. Sobel edge
detection, as can be found in the NVIDIA CUDA SDK. For the second step Otsu



thresholding can be used. Otsu thresholding makes a histogram of the edge im-
age, processes the histogram and finds the best threshold value. An efficient
GPU implementation of making a histogram can be found in [8]. In the Hough
space post-processing stage the maximum in the Hough space is located. This
maximum can be used to draw the most dominant line in the original image.

This paper is organized as follows. First two parameterizations for lines and
their corresponding Hough transform are presented in Section 2. In Section 3
the benchmark setup can be found, together with a brief description of GPU
hardware and programming. The different GPU implementations of the Hough
transform can be found in Section 4 and the results and evaluation can be found
in Section 5. Finally conclusions and future work are presented in Section 7.

2 Hough transform for lines

The Hough transform for lines [6] is a voting procedure where each feature (edge)
point in an image votes for all possible lines passing through that point. All votes
are stored in the so called Hough space, which is two dimensional for the Hough
transform for lines. The size of the Hough space is determined by the size of the
input image and the required accuracy for the parameterization of the lines. Two
different parameterizations for lines and their corresponding Hough transforms
are described in this section.

2.1 Cartesian Hough transform

A straight line can be described in a Cartesian coordinate system with a slope
a and some intersect b with the vertical axis by the following equation:

y = ax+ b (1)

In the Hough transform, the characteristics of the straight line are not considered
as image points (xi, yi), but instead in terms of its parameters a and b. Therefore
Eq. 1 can be rewritten to:

b = yi − xia (2)

For each image point (xi, yi) a line of votes is placed in the Hough space for a
range of angles θ. Parameter a is calculated as a = tan(θ), and the corresponding
values for b are calculated with Eq. 2. In Fig. 1(a) the two points (xp, yp) and
(xq, yq) form a line. The two corresponding lines in the Hough space are shown
in Fig. 1(b). At the intersect of these two lines the (best approximated) value
for the parameters a and b can be found.

The parameters can become an infinite number when the line is vertical.
Therefore the Hough space is usually divided into two parts: one part for angles
between −45◦ and 45◦ which uses Eq. 2 and one part for angles between 45◦

and 135◦ which uses Eq. 3.

b′ = xi − yia′ (3)



b
(xp, yp)

b
(xq, yq)

x

y

(a)

(a, b)

a

b

b

(b)

Fig. 1. (a) A line through two points in an image. (b) Corresponding two lines in
Hough space.

2.2 Polar Hough transform

In the polar representation a line is parameterized with ρ and θ [3], as shown in
Fig. 2. Parameter ρ represents the distance between the line and the origin, and
the angle of the vector from the origin to this closest point, as given by Eq. 4.
Eq. 1 and Eq. 4 are related by Eq. 5.

ρ = x cos(θ) + y sin(θ) (4)

a = − 1

tan(θ)
b =

ρ

sin(θ)
(5)

In this polar parameterization the parameters ρ and θ are bounded. The angle
θ ranges from 0◦ to 180◦ and the radius ρ ranges from 0 to

√
W 2 +H2, where

W and H are the width and height of the image respectively.

θ

x

y ρ

Fig. 2. Polar representation of a line.

3 Benchmark setup

To measure the performance of the different parameterizations for lines in the
Hough transform, a number of benchmarks are performed. The CPU used in
these benchmarks is an Intel Core i7 930 with four cores running at 2.8 GHz.
The CPU implementations use OpenMP to utilize all cores and calculate the
Hough transform by iterating over all pixels in the binary input image. If a pixel
value is equal to ‘1’, this pixel value is used in the voting process, otherwise it is
discarded. In all implementations the trigonometric functions are pre-calculated
and stored in an array.

The GPU used in our setup is an NVIDIA GTX 470 with 448 CUDA cores
running at 1.2 GHz and has 1280 MB of off-chip global memory. In NVIDIA’s
latest architecture (Fermi) [9], 32 CUDA cores are grouped into a cluster. Each
cluster has an on-chip shared memory (about 48 kB) and a cache.



(a) (b)

(c) (d)

Fig. 3. Test image with resulting line (red) after Hough transform (a); intermediate
images after edge detection (b) and thresholding (c); final Hough spaces (d).

The code executed on a GPU is called a kernel. Kernels run on the GPU in
thousands or even millions of threads. Each thread executes the same program,
but not necessarily the same instruction at the same time. Threads are organized
into thread blocks. All threads in a thread block are executed on the same
processing cluster and can communicate via its shared memory. Threads within
a thread block are arranged in warps of (at most) 32 treads, and each thread in
a warp executes the same instruction at the same clock cycle [10].

All images used in the measurements in this paper are gray scale images and
have a resolution of 1920 × 1080 pixels. The chosen resolution for the parameters
in the Hough space is one degree for the the angle parameter (a in Eq. 1 and
θ in Eq. 4) and 1 pixel for the intersect parameter (b in Eq. 1 and ρ in Eq. 4).
First Sobel edge detection and Otsu thresholding are applied on the images. An
example test image can be found in Fig. 3. The number of edge pixels after
thresholding in this image is 5.9%. Taken an average over the 2550 unique pic-
tures in the Nistér and Stewénius benchmark set [7], the average number of edge
pixels after applying Otsu thresholding is 9.6%. The distribution of the number
of edge pixels in an image in this benchmark set is shown in Fig. 4.

Fig. 4. Distribution of the number of edge pixels in the images of the Nistér and
Stewénius benchmark set [7].



4 GPU implementations

The difference in execution time of the two different parameterizations of the
Hough transform as described in Section 2 is measured by two implementations
on a CPU and a GPU. The GPU versions are based on the fast GPU implemen-
tation as described in Section 4.2 below. A comparison between these CPU and
GPU implementations is made in Section 5.

Next to the different versions for the different parameterizations, three im-
plementations for the Cartesian parameterization of the Hough transform have
been made to explore the trade-offs between execution speed, predictability and
code complexity. First a very basic implementation is described, which is used as
the reference for the other implementations. The second implementation focuses
on processing speed, at the cost of more complex code and a higher memory
utilization. The last implementation achieves a constant processing time, which
makes its processing time independent of the input image. In all three GPU im-
plementations the trigonometric functions are calculated jointly by all threads
in a thread block and stored in an array in the shared, on chip, memory.

4.1 GPU implementation 1 - basic

The first GPU implementation is a based on the CPU implementation, without
GPU specific optimizations. The pseudo code for this implementation is given
in Fig. 5. First the Hough space in off-chip global memory has to be reset to
all zeros. Then a kernel is started with one thread for each pixel in the input
image. If the value of the pixel is a ‘1’, the thread places a vote in both Hough
spaces (the Hough transform in the Cartesian parameterization consists of two
Hough spaces, see Section 2.1) for each possible angle. The Hough spaces are
located in the global (off-chip) memory of the GPU and atomic operations have
to be used for the voting process. Measurements (see Section 5) show that this
implementation is just a bit slower than an optimized CPU implementation.
The most time consuming step in this implementation are the atomic additions
on the Hough spaces in global memory, since atomic operations which modify
values in the same location and which are executed by threads in a warp are all
serialized, and global memory latency is typically 400 - 800 clock cycles [10].

1 pixel_value = image[x,y]
2 if(pixel_value > threshold) {
3 for i=0:N {
4 a1 = A1[i]; b1 = y - x*a1 // tan() calculations are
5 a2 = A2[i]; b2 = x - y*a2 // stored in arrays A1 and A2
6

7 atomicAdd(HS1[(a1,b1)], 1)
8 atomicAdd(HS2[(a2,b2)], 1)
9 }

10 }

Fig. 5. Pseudo code for voting in the Hough space for a single pixel in the basic GPU
implementation of the Cartesian Hough transform.



4.2 GPU implementation 2 - fast

The second implementation focuses on processing speed. As mentioned in Sec-
tion 3, less than 10% of the pixels are actually used in the voting process. This
means that most of the threads in the previous solution are waiting for a few
threads to finish. Therefore this second solution starts by making an array of all
pixels that need to be processed. A second kernel processes this array to create
the Hough space. This two step process is illustrated in Fig. 6.

1080

1920

c

d d

a

b

Fig. 6. Fast implementation of the Hough transform on GPU. Each thread block in the
first kernel converts a part of the image to an array of pixel coordinates in the shared
(on-chip) memory (a). The part of the array is added to the main array in global (off-
chip) memory (b). In the second kernel the array of pixel coordinates is processed by
a thread block to create one Hough line in each of the two Hough spaces in the shared
memory (c). When the complete array of coordinates has been processed, the Hough
line is copied to the corresponding Hough space in global memory (d).

Creating the array The creation of the array is inspired by the work in [8],
where a histogram for each warp in a thread block is made. For the Hough
transform an array of only the pixels which have to be used in the voting process
is desired. To build this array in a parallel way on the GPU (step a in Fig. 6),
small arrays are made on a warp-level granularity. How an array per warp is
made is summarized in pseudo-code in Fig. 7. Note that all threads in a warp
execute the same instruction at the same time in parallel, but some threads may
be disabled due to branching conditions.

1 pixel_value = image[x,y]
2 if(pixel_value > threshold) {
3 do {
4 index++
5 SMEM_index = index
6 SMEM_array[index] = (x,y)
7 } while(SMEM_array[index] != (x,y))
8 }
9 index = SMEM_index

Fig. 7. Building an array of coordinates of edge pixels in shared memory (SMEM)
(step a in Fig. 6).



Each thread in a warp reads a pixel from the input image (line 1, Fig. 7).
As the pixel value is larger than a threshold value (line 2), the pixel coordinates
need to be added to the array. The index of where these coordinates are to be
stored is increased by one (line 4), to ensure no previously stored coordinates
are erased. The new index is also stored in the on-chip shared memory (line 5),
so threads in the warp which do not have to store coordinates can update their
index value after all coordinates in this iteration have been added to the array
(line 9). Now each thread tries to write its coordinate pair (x, y) to the array in
shared memory at location index (line 6). Only one thread will succeed (line 7),
and the others have to retry to write to the next location in the array (line 3-7).
On average this loop has to be executed three times before all threads in the
warp (32 threads in total) have added their coordinate pair (x, y) to the array,
since only 10% of the pixels are above the threshold, as shown in Section 3.

There is a trade-off in the number of pixels each thread has to process. More
pixels per threads result in less arrays to combine later, but too many pixels per
thread means that there are not enough threads active to keep the GPU fully
utilized. Also the maximum number of pixels in each small array is limited by
the amount of shared memory available.

Now all small arrays in the shared memory have been made, they have to be
combined in one array in the off-chip global memory (step b in Fig. 6). First one
thread in each thread block sums the lengths of all warp-arrays of the thread
block. This sum is added by this single thread to the global length of all arrays
by a global atomic operation. This operation returns the value of the global
length before the sum was added. This global length value is now used to tell
each warp at which index in the global array their warp-array can be stored.

Voting in Hough space A second kernel is used to vote in the Hough space.
Since atomic operations to the off-chip global memory are slow, the voting im-
plementation is improved compared to the voting implementation in Section 4.1.
A single thread block is used to create a single line (one value for the angle pa-
rameter) in each of the two Hough spaces simultaneously (step c in Fig. 6). The
number of lines in the Hough space is determined by the required accuracy of the
angle parameterization. This implies that the entire array will be read as many
times as there are values for the angle parameter. Each Hough line is first put
together in the shared memory, and later copied to the global memory to create
the complete Hough space(step d in Fig. 6). This also removes the requirement
that the Hough space in global memory has to be reset to zero, as was the case
in the implementation in Section 4.1.

4.3 GPU implementation 3 - constant

For the third implementation the relative number of pixels to be processed does
not influence the processing time. A graphical representation of this implemen-
tation is shown in Fig. 8.

In this implementation, all threads in a thread block will together copy a
couple of lines of the input image to the on-chip shared memory (step b in



1920 1080

1080

19201080

1920

a

b b

c c

d d

e e

Fig. 8. Input-data independent implementation of the Hough transform on GPU. First
the image is rotated by the first kernel (a). In a second kernel each thread block copies
a part of the input image from the global (off-chip) memory to the shared (on-chip)
memory (b). Then one Hough line is calculated in shared memory based on the part
of the image in the shared memory (c). This line is stored in a sub-Hough space in
global memory (d). This step is repeated to calculate the next Hough line, until one
entire sub-Hough space is filled by each thread block. A third kernel sums all sub-
Hough spaces together to make the final Hough space (e). The last two kernels are
implemented in two versions, one for the original image in landscape orientation and
one for the rotated image in portrait orientation.

Fig. 8). Then all threads read this part of the input image pixel by pixel, and
together produce one Hough line (step c in Fig. 8). Here atomic operations are
not required, since consecutive threads vote for consecutive bins in the shared
memory (since consecutive threads process consecutive pixels). This is only true
if threads are working on the same image line, as can be seen in Eq. 3. If threads
work on different image lines, they vote for the same value of b and atomic
operations would be required. So all threads in a thread block need to synchronize
after processing an image line, to remove the need for atomic operations. This
method is most efficient when the least amount of synchronizations are required,
e.g. the width of the input line is as large as possible.

After one line in the Hough space is created, it is written to the off-chip
global memory (step d in Fig. 8) and the next Hough line is generated in the
same way. After all lines are generated and copied to global memory, a second
kernel combines all sub-Hough spaces of parts of the image to one Hough space
of the entire image (step e in Fig. 8).

To create the second Hough space, the image is first rotated in another kernel
(step a in Fig. 8). This makes it possible to read the image coalesced and vote
for consecutive bins, since consecutive pixels are read according to Eq. 2. Then
the same algorithm is used as described above, but now there are more lines
which are smaller (since the image now has a portrait orientation instead of a



landscape orientation). This means that creating this second Hough space takes
more time than creating the first Hough space.

This implementation is limited by the amount of on-chip shared memory
in the GPU. To reduce the number of sub-Hough spaces, a thread block should
process a part of the image as large as possible. Since after the thresholding stage
the pixels can only have two values (0 or 1, below or above threshold value), each
pixel can be packed into a single bit. This means that more pixels can be stored
in the shared memory (in comparison to the original approach where each pixels
is stored in one byte), and the number of sub-Hough spaces (which have to be
added later) is reduced. A second benefit is that the reading of the input image is
faster, since the number of bytes required to read the complete image is reduced.
Packing the image from bytes to bits can be done in the rotating stage (step a
in Fig. 8), through what it does not take much extra processing time (about 2%
of the total processing time).

5 Results

In this section the results of the CPU and GPU implementation for the two differ-
ent parameterizations are discussed first. Then the results of the three different
GPU implementations (basic, fast and constant) are discussed. All GPU timing
measurements only include the execution time of the kernels, data transfer times
to and from the GPU are not included since the pre- and post-processing steps
are also executed on the GPU.

The performance of the (fast) GPU implementation of the different parame-
terizations can be found in Table 1. These results are compared to an optimized
CPU implementation, where all four cores in the test system are used.

Table 1. Results of the two different parameterizations on the test image.

Hough version CPU time GPU time Speed up

Cartesian 18.2 ms 2.6 ms 7.0×
Polar 23.3 ms 3.3 ms 7.0×

As can be seen in Table 1, both parameterizations have about the same
performance, as well on the CPU as on the GPU. The Polar parameterization is a
bit slower, since each vote by a pixel requires two (floating point) multiplications
instead of one. The average speed-up of the GPU implementations over the CPU
implementations is seven times.

For all three implementations (basic, fast and constant) of the Cartesian pa-
rameterization as described in Section 4, a GPU implementation has been made.
The results can be found in Table 2, which show that the basic implementation
is about 20% slower than the optimized CPU implementation. By optimizing
the GPU code for speed, the performance can be increased by almost a factor



of 10, but at the cost of more complex code. The code is not only more com-
plex in number of source lines of code, but also in how easy its parameters like
image size and Hough space size (which controls the quality of the result) can
be adjusted. The code for the constant implementation is even more complex.
The input image size is fixed (only multiples of the current image size are easy
to implement), to make all optimizations possible.

Table 2. Timing results of the three different GPU implementation on the test image.
The results of the fast- and constant implementations are split over the different kernels.
The number of source lines of code only includes the GPU kernel code.

Implementation GPU time Source lines of code

1. Basic 21.6 ms 29

2. Fast 2.6 ms 97

a. Array building 0.3 ms

b. Voting in Hough space 2.3 ms

3. Constant 10.6 ms 193

a. Rotate and pack image 0.5 ms

b. Voting in sub Hough spaces 1 3.9 ms

c. Summing sub Hough spaces 1 0.4 ms

d. Voting in sub Hough spaces 2 4.9 ms

e. Summing sub Hough spaces 2 0.9 ms

The constant implementation which takes bits as input for the input pixels,
executes in 10.6 ms as shown in Table 2. Without packing each pixel into a single
bit, but leaving it in a byte, increases the execution time to 18.6 ms. Packing
the pixels from bytes to bits only takes 0.2 ms extra in the rotating stage, which
makes it well worth the effort, although it also increases the program complexity.

A trade-off can be made between accuracy and processing speed. By reducing
the number angles in the Hough space, the execution time is reduced, but so is
its accuracy. The execution time of the fast and the constant implementation
with a 3 degree and 6 degree accuracy can be found in Fig. 9. This figure shows
that the execution time of the fast implementation scales linear with the number
of edge pixels in the image. After some value (about 16% of all pixels being edge
pixels), the constant implementation is even faster than the fast implementation.

6 Related Work

An OpenGL implementation of the Hough transform on a GPU is presented
in [5]. Unfortunately no performance measurements are given, but it is mentioned
that an array of all edge pixels is made on the CPU. The circle Hough transform
has been implemented on a GPU by [13], also in OpenGL. Both papers use
the rendering functions of OpenGL to calculate the Hough space. With the
availability of CUDA nowadays, using OpenGL to program GPUs for general



(a) Accuracy 3 degrees (b) Accuracy 6 degrees

Fig. 9. Execution time of the Fast and Constant GPU implementation of the Hough
Transform (HT) with 3 degrees and 6 degrees of accuracy.

purpose computations has fallen in disuse. One CUDA implementation of the
Hough transform can be found in CuviLib [12], a proprietary computer vision
library. It uses the polar representation of a line for the Hough transform. Next
to calculating the Hough space, it also finds the maxima in the Hough space at
the same time.

7 Conclusion

In this paper we have introduced two new implementations for the Hough trans-
form on a GPU, a fast version and an input-data independent version. We have
shown that the parameterization (Cartesian or polar) used for lines in images
does not influence the processing speed of the Hough transform significantly.
Optimizing the GPU code for speed does result in a significant improvement.
Another way to optimize the GPU code is to make it input-data independent.
Our result show that the fast-implementation is the quicker of the two for about
80% of the images. The input-data independent implementation has the same
processing speed for every image, and is faster if the number of edge pixels ex-
ceeds a certain threshold (about 16% in our case). While the effort for making a
basic GPU implementation is about an hour, creating the fast implementation
can take a couple of days, and the constant implementation even weeks.

The program code for the input-data independent implementation is so com-
plex that it is very hard to make any changes to parameters, like image size.
The fast implementation does not suffer from this drawback. Therefore, and be-
cause it is the quicker solution for about 80% of input images, it is advisable to
select the fast implementation of the Hough transform in every case where the
processing time does not have to be fixed.

The input-data independent implementation shows that packing the input-
data from bytes to bits can result in a large speed-up of the application. The
GPU used in this paper already supports packing standard data types (char, int,
float) into vectors of two, three or four elements. Packing bytes into bits would
make a good addition to this, at little extra hardware costs.

Future work will include the Hough transform for circles. The corresponding
Hough space is much larger than the Hough space for lines, since it has three
dimensions instead of two. This will create a new trade-off between the fast and



the input-data independent approach. For the input-data independent imple-
mentation the image no longer has to be rotated, which would save over half of
the processing time in the Hough transform for lines. But the final Hough space
is much larger when detecting circles, which will limit the number of sub-Hough
spaces which can be generated and makes them more costly to add together.

References

1. Allusse, Y., Horain, P., Agarwal, A., Saipriyadarshan, C.: GpuCV: An OpenSource
GPU-Accelerated Framework for Image Processing and Computer Vision. In: 16th
ACM international conf. on Multimedia. pp. 1089–1092. MM ’08, ACM (2008)

2. Bramberger, M., Brunner, J., Rinner, B., Schwabach, H.: Real-Time Video Anal-
ysis on an Embedded Smart Camera for Traffic Surveillance. In: Real-Time and
Embedded Technology and Applications Symposium, 2004. Proceedings. RTAS
2004. 10th IEEE. pp. 174 – 181 (May 2004)

3. Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and
Curves in Pictures. Commun. ACM 15 (January 1972)

4. Forsberg, J., Larsson, U., Wernersson, A.: Mobile Robot Navigation using the
Range- Weighted Hough Transform. Robotics Automation Magazine, IEEE (1995)

5. Fung, J., Mann, S.: OpenVIDIA: Parallel GPU Computer Vision. In: Proceedings
of the 13th annual ACM international conference on Multimedia. pp. 849–852.
ACM, New York, NY, USA (2005)

6. Hough, P.: Method and Means for Recognising Complex Patterns. US Patent No.
3,069,654 (1962)

7. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). vol. 2, pp.
2161–2168 (June 2006)

8. Nugteren, C., van den Braak, G.J., Corporaal, H., Mesman, B.: High Performance
Predictable Histogramming on GPUs: Exploring and Evaluating Algorithm Trade-
offs. GPGPU 4 (2011)

9. NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi (2009)

10. NVIDIA Corporation: NVIDIA CUDA C Programming Guide - Version 3.1 (2010)
11. Takacs, G., et al.: Outdoors Augmented Reality on Mobile Phone using Loxel-

Based Visual Feature Organization. In: Proceeding of the 1st ACM international
conference on Multimedia information retrieval. pp. 427–434. MIR ’08, ACM (2008)

12. TunaCode (Limited): Cuda Vision and Imaging Library, http://www.cuvilib.com/
13. Ujaldón, M., Ruiz, A., Guil, N.: On the computation of the Circle Hough Transform

by a GPU rasterizer. Pattern Recognition Letters 29(3), 309–318 (2008)
14. Wang, Y., Shi, M., Wu, T.: A Method of Fast and Robust for Traffic Sign Recog-

nition. In: Fifth International Conference on Image and Graphics, ICIG ’09 (2009)


