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ABSTRACT – From the desire to update the maximum road speed data for navigation 
devices, a speed sign recognition and detection system is proposed. This system should 
prevent accidental speeding at roads where the map data is incorrect for example due to 
construction work. Multiple examples of road sign classification systems already exist but 
none uses a fully trainable solution. This feature enables the “vendor” to easily add new 
speed signs by training with a set of examples instead of designing a new system. To meet 
the above requirements a fully trainable Convolutional Neural Network (CNN) is used for the 
detection and recognition of speed signs. 
 
The system is trained with a labelled set of examples of speed sign images. Training of the 
total classification system is done off-line with the of error back-propagation algorithm. A 
trained system is used to collect new training data from road scene images to learn from 
previous errors, this technique is known as boosting. After the boosting step 0.19% of the 
images in our online available test set are misclassified. For the detection application the 
search window of the trained CNN is scaled to a 1280x720 HD image size to detect speed 
signs at multiple scales and positions in front of a vehicle. Because of the massive amount of 
parallelism in the computations of a CNN the algorithm is mapped to a Graphics Processing 
Unit (GPU). The GPU implementation demonstrates the abilities of the recognition system 
on a low cost consumer platform with a real-time frame rate of 35 fps. 
 
1. INTRODUCTION 
In the past decade the automobile industry has made a shift towards intelligent vehicles 
equipped with driving assistance systems. GPS navigation is an example of a commercially 
successful driving assistance system. The current state-of-the-art navigation devices do not 
only assist for correct navigation but also warns the driver to prevent accidental speeding. 
Most navigation systems use their static map with road type information to warn about the 
maximum allowed speed. In some situations the static map data alone is not sufficient, for 
example during road works that temporally change the maximum allowed speed. A solution 
to the dynamically changing road situation is the usage of vision systems. 
 
Recently the automobile industry has introduced vision systems in their high end cars. 
Examples are the BMW 7er, Mercedes S-Class, Audi A8, Opel Insignia and VW Phaeton. Also 
in the research community vision systems for speed sign recognition are published [1][2][3]. 
All these systems are designed for their specific application as a pipeline of carefully tuned 
algorithms. In the first step of the pipeline the input is pre-processed with fixed algorithms 
such as Lightning correction, Histogram stretch, Colour segmentation, Edge detection, 
Hough transform, etc. The result of these steps is used to perform the classification by a 
matching algorithm or by machine leaning techniques such as Artificial Neural Networks 



(ANNs) or Support Vector Machines (SVMs). Designing such a pipeline of algorithms is very 
time consuming and must be redone to support new road signs or other objects. 
 
The mapping of these computationally complex algorithms to onboard vision platforms is a 
time consuming task. This is especially true if the system is already deployed and the 
“vendor” wants to sell new functionalities to existing platforms. This is a realistic business 
case because car lifetime is estimated to 15 years but new developments in driving 
assistance systems return every 2 years. Therefore automotive “vendors” should have a 
flexible platform to anticipate on new developments. But we cannot expect all “vendors” to 
standardize on their hardware platforms. Some sort of a virtual platform such as a virtual 
machine for vision algorithms is a far more flexible solution. 
 
Our vision solution differs from the current state-of-the-art systems in that it uses a platform 
independent flexible approach. The proposed vision system is based on a fully trainable 
Convolutional Neural Network (CNN). The inputs of the CNN are the raw pixel values and the 
outputs are direct confidence values representing the possibility of a speed sign. Usage of a 
fully trainable solution enables the feature to modify the objects of interest by training with 
a set of examples. After training the “vendor” can support speed signs from multiple 
countries by updating the set of network coefficients of the user. The CNN algorithm works 
as a virtual machine that can imitate all kind of vision systems. After the system is deployed 
new features such as Pedestrian detection [4], Lane detection and Car to car distance 
detection can be added by a simple update of the network coefficients. This makes that a 
CNN solution is very flexible and therefore reusable with the small effort of training and 
updating coefficients. With this system “vendors” can make money even long after the car 
has been sold. 
 
Our contributions of this work are: 1) The collection and labelling of a large training dataset 
consisting of speed sign images. 2) The designing and off-line training of a CNN for a speed 
sign recognition application. 3) Mapping of the recognition algorithm to a GPU that performs 
real-time detection at 35 fps.  
 
The content of the paper is as follows. Section 2 contains an overview of the CNN model as 
introduced in [5]. Section 3 describes the collection procedure and characteristics dataset 
that is used for training and testing. Section 4 describes the total training procedure. Section 
5 describes the mapping of the speed sign detection and recognition procedure for 
1280x720 HD video frames on a GPU platform. Section 6 concludes with discussion. 
 
2. ALGORITHM OVERVIEW 
An example architecture of a CNN is shown in Fig. 1. This one is used for handwritten digit 
recognition [5]. The first layers of the network C1 up to S2 function as a trainable feature 
extractor. All the network layers contain neuron models as in a classical Multi Layer 
Perceptron (MLP) network [6]. The feature extraction layers C1 up to S2 have specific 
constraints such as local connectivity and weight sharing. With these constraints the first 
layers are able to extract position invariant features from two-dimensional shapes. The 
classification layers n1 and n2 at the output are fully connected MLPs. These layers use the 
extracted local features to perform classification of the input image. The details of the three 
different types of layers are described in the next subsections. 
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Fig. 1 CNN architecture for a handwritten digit recognition task. 

 
2.1 Convolution Layers (CLs) 
The feature maps of CLs, such as C1 and C2 in Fig. 1, contain neurons that take their synaptic 
inputs from a local receptive field, thereby detecting local features. The weights of the 
convolution neurons within a feature map are shared, so the position of the local feature 
becomes less important, thereby yielding shift invariance. The expression to compute a 
convolution neuron output is given as: 
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This expression describes the convolution operation on input image x with convolution 
kernel v. The only difference with a standard convolution is the threshold value b which is 
added to the result. 
 
2.2 Subsample Layers (SLs) 
CLs are succeeded by a SL to perform a data reduction operation of the CL result. This data 
reduction operation is done by local averaging over a predefined, non-overlapping window. 
The size of the averaging window is described by the subsample factor S. The expression for 
computation of a subsample neuron is given as: 

 
1 1

0 0

[ , ] ( ) ( [ , ])
S S

k l

y m n p b u x mS k nS l 
 

 

      (2) 

where, 

 
1

( )
1 exp( )

p
p

 
 

 (3) 

2.3 Neuron Layers (NLs) 
The classification of the input image of the CNN is done at the output layers such as n1 and 
n2 in Fig. 1. In these layers all neurons have a unique set of weights, this enables them to 
detect complex features and perform a classification. The expression for the computation of 
these classical perceptrons [6] is given as: 
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An important property of the CNN architecture is that all synaptic weights and bias values 
can be trained by cycling the simple and efficient stochastic mode of the error back-
propagation algorithm through the training sample [5]. 



 
3. DATASET CONSTRUCTION 
The detection and classification of the speed signs is performed by a fully trainable CNN. 
Instead of focussing on improved features and algorithms we focused on learning from a 
large dataset. In other published work is already observed that the use of large data sets for 
trainable classifiers shows very promising results for generalization and recognition   
accuracy [7]. Therefore the collection of a representative training dataset is very important 
because it has a big impact on the recognition performance. 
 
The construction of the initial training dataset is performed by manually collecting real-world 
images of the investigated speed sign classes on roads in the Netherlands. One part is 
collected by using Google search commands for images the other part is collected by using 
images from Google Street View. To increase the training set, selections of speed sign 
images that are published in [8] are added. The constructed dataset contains 713 images of 
speed signs that are all cropped to show the full speed sign with a small border. A subset of 
the training images is depicted in Fig. 2. Training with real-world images with natural 
variations results in invariance to light conditions, small scale differences and small 
rotations. 
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Fig. 2 Example images from the collected traffic sign dataset. 

 
Using only traffic sign image is not sufficient to train the classifier; a good set of background 
images is also required. A representative background training class prevents false detections 
and is therefore very important. One part of the background class is gathered from random 
image patches that are collected form road scene images. The remaining part is constructed 
by traffic sign images that look similar to the speed sign classes as depicted in Fig. 3. 
 

Background images hard to suppress Random background image patches
 

Fig. 3 Example images from the background class 

 
To test the generalization of the trained classifier with data that is not used for training; 1/7 
part of the images of each class is separated into a testing set. A complete overview of the 
dataset organization is depicted in Table 1. Collecting a speed sign dataset of this size is time 
consuming but necessary for training. To our knowledge little effort is done to publicize real-
world speed sign image databases. Also the fact that speed signs differ from country to 
country makes it very valuable to publicize our dataset [9]. 
  



 Table 1. Dataset configuration with the desired output coding for each class 

class   output label   # patterns 

        training testing total 

background 0 0000000 2489 415 2904 
30 km/h max 1 1000000 77 13 90 
50 km/h max 1 0100000 120 20 140 
60 km/h max 1 0010000 62 10 72 
70 km/h max 1 0001000 129 21 150 
80 km/h max 1 0000100 75 13 88 
90 km/h max 1 0000010 79 13 92 
100 km/h max 1 0000001 69 12 81 

        3100 517 3617 

 
4. TRAINING 
The training algorithm that is used to learn the coefficients of the CNN is the on-line mode of 
error back-propagation [10]. The main reason to choose for this training algorithm is the fact 
that it scales well with large datasets of training data [6]. The basic idea of error back-
propagation is to efficiently calculate the partial derivatives of the output error in function of 
the weights for a given input pattern. These partial derivatives are used to perform small 
corrections to the weights to the negative direction of the error derivatives. Because of 
space limitation the details of the derivation of the update rules are not described, a good 
description is found in [6] and [11]. 
 
4.1 Preparation of the training data 
Before the training procedure is started the data set is prepared for training. First the 
dataset is converted to greyscale images; the main motivation is the fact that colour 
representations are not consistent between day and night conditions. For training of the 
CNN a fixed size window as input layer is required. In the experiment a 32x32 pixel input is 
used; this results in a final application that can detect speed signs of 32x32 pixels and more.  
 
Inspired by the good results for handwritten digit recognition published in [5] the amount of 
different training examples is artificially increased by selecting small modifications to each 
image during training. Adding small distortions to the training set results in more invariance 
to the applied distortion. The following modifications are used to expand the training set: 

 Light intensity modification, pixel values multiplied by [0.8 0.9 1.0 1.1 1.2] 

 Shift in x and y position [-2 -1 0 +1 +2] pixel positions 

 Scaling the image [0.93 1 1.05] 
 
4.2 Network design 
Inspired by the good results on hand written digit recognition by the Lenet-5 CNN [5], this 
architecture is used as a starting point of the exploration. The configuration of Lenet-5 is 
similar to the configuration displayed in Fig 1. Layer C1 contains 6 feature maps and layer C2 
contains 16 feature maps with a specific connection scheme. This interconnection scheme 
forces the feature maps to learn different features. The fully connected neural layer n1 

contains of 120 neurons and n2 has 8 output neurons. The 8 outputs correspond to the 
output coding depicted in Table 1.  
 



In a paper under submission we propose efficiency optimization methods that reduce the 
workload of the feature extraction layers significantly. For the optimized Lenet-5 CNN used 
on a 1280x720 pixel input image the computational workload for layer n1 is 92% of the total 
execution workload. Therefore the parameters of layer n1 are varied to select a good 
performing and computationally efficient network architecture. Three test configurations 
are trained:  
1).  The original configuration with 120 neurons in layer n1 is trained as a reference. 
2).  The size of layer n1 is reduced to 80 fully connected neurons. 
3).  The first 40 n1 neurons of network 2 are connected to feature map 1 to 8 and the 

other 40 neurons are connected to feature map 9 to 16.  
 
The training progress for the three configurations over 2000 epochs of training is depicted in 
Fig. 4. The recognition performance for the last 100 epochs is magnified in Fig. 5. From this 
graph we conclude that network 1 and 3 have the best recognition accuracy. The reduced 
number of neurons in network 2 has degraded the accuracy on the test set. On the other 
hand the more specific connections used in network 3 have compensated for a reduced 
number of neurons. The reduction of the number of neurons and local connection in layer n1 
result in a reduction of the computational workload of 67% for this computation intensive 
layer. By taking these observations into account we conclude that network 3 is the best 
configuration. 
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 Fig. 4 Classification score over 2000 training epochs Fig. 5 Classification score at the end of training 

 
4.3 Iterative boosting 
During the first tests with the trained CNN for captured video material a large number of 
false detection are measured. The reason for the high amount of false detections is that the 
background class has an infinite variety of patterns which is impossible to include in the 
training set. To efficiently train the system to suppress all sorts of background patterns an 
iterative boosting algorithm as published in [12] is used. The basic idea behind the algorithm 
is to add only patterns to the training set which resulted in false detections. This forces the 
network learn from his previous errors.  
 
To automate the boosting procedure 292 road scene images without speed signs are 
collected. First the recognition algorithm is executed on the new dataset with a high 
detection threshold. This step selects only detections with a confidence value above 0.9. The 
resulting patterns are the image patches for which the classifier is very sensitive. These 
examples are added to the training set and training is continued for 200 epochs. Next these 
steps are repeated with a decreased acceptance threshold. The results of the iterations are 
depicted in Table 2. After 6 boosting iterations is concluded that the number of false 
detections above a threshold of 0.5 is acceptable. 



  Table 2. Overview of the rejection score after each boost iteration 

boost iteration   fixed score false detections   selection detections 
selected 

  train set 

     threshold    threshold    

1 
  

0.5 12595 
  

0.9 361 
  

3461 
2 

  
0.5 232 

  
0.8 18 

  
3479 

3 
  

0.5 419 
  

0.7 85 
  

3564 
4 

  
0.5 18 

  
0.6 7 

  
3571 

5 
  

0.5 103 
  

0.5 103 
  

3674 
6 

  
0.5 3 

  
0.4 15 

  
3689 

7     0.5 1     0.3 19       

 
The network that is obtained after boosting scores very well on the test set that is used in 
section 4.2. For 517 test images only one misclassification is measured. The percentage of 
misclassifications is reduced from 0.77% without boosting, to 0.19% with boosting. 
Therefore is concluded that boosting improves the recognition accuracy of the CNN by a 
significant amount. 
 
The obtained network functionality is stored as 24,958 coefficients. To load this functionality 
into an existing online CNN detection system requires a 100 KB software update. Mapping of 
new algorithms is not necessary because the network operations are not modified. 
 
5. GPU IMPLEMENTATION 
In this section the conversion of the trained Convolutional Neural Network (CNN) into a real-
time detection system is outlined. The operations of a CNN contain a huge amount of 
parallelism. A cost effective platform to exploit parallelism is a GPU. Therefore the algorithm 
is mapped to a GPU. The platform that is used for the mapping is a consumer grade Nvidia 
GTX460. 
 
The first step of the algorithm that is mapped is the construction of an image pyramid. This 
step subsamples the input image with steps of 1.25 to detect also large speed signs which 
are close to the camera. To perform this step efficient, the hardware optimized texture units 
of the GPU are used. The CUDA programming guide [13] describes how bilinear filtering is 
implemented for this task. 
 
The next step is the processing of the layers of the CNN. First the implementation is 
optimized to improve data locality by loop interchange and tiling. Second GPU specific 
optimizations described in the CUDA programming guide [13] are applied. Memory accesses 
to the images are grouped to have coalesced memory accesses and the used kernel 
coefficients are stored in the fast constant memory. As final optimization the non-linear 
sigmoid activation function is evaluated fast using the special function units of the GPU. Fig 
6. shows that the detection step of the CNN consumes most of the processing time. 
Summing the total processing time required for a 1280x720 HD video frame results in 28 ms 
of processing. This results in a practical frame rate of 35.7 frames per second for real-time 
detection. 



 
 Fig. 6 Processing time of the CNN algorithm on the GPU platform 

 
Example output video frames for the CNN speed sign detection application are depicted in 
Fig. 7 and 8. In these video frames it is shown that a speed sign results in multiple 
overlapping detection at different positions and scales. It is assumed that all visualize speed 
signs will have these overlapping detections over multiple frames. Therefore the recognition 
accuracy of the detector is improved by temporal and spatial integration of overlapping 
detections. 
 

 
Fig. 7 Detector output for a 50 km/h speed sign Fig. 8 Detector output for a 70 km/h speed sign 

 
6. CONCLUSION 
This paper proposes a speed-sign detection and recognition application based on a fully 
trainable Convolutional Neural Network (CNN). To train the application a dataset containing 
713 real speed sign images from roads in the Netherlands are collected and published. The 
dataset is completed with 2904 background images of other road signs, threes, cars and 
other non-speed sign images. The speed sign recognition application is trained with 
greyscale images to classify speed signs based on their shape of at least 32x32 pixel values. 
During the training phase a network configuration exploration is performed. The exploration 
resulted in a computationally efficient network architecture which has the same recognition 
accuracy as the computationally complex configurations. 
 
After the training phase the rejection performance is improved by applying an iterative 
boosting algorithm. Using the boosting algorithm on a set of road scene images reduces the 
amount of false detections tremendous. After training the application misclassifies only 
0.19% percent of the test set. The resulting functionalities of the CNN are stored as 24,958 
weights that can be trained by the “vendor” and are easy spread to the “consumer” by a 100 
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KB software update. No new mapping is required for this step because the elementary 
operations of the network do not change. 
To demonstrate the real-time recognition speed of the application the algorithm is mapped 
to a consumer grade GPU. The GPU implementation has a recognition speed 35.7 fps for 
1280x720 HD video. With this mapping example is shown that a fully trainable CNN based 
detection system scale very well for parallel GPU platforms. Multiple new low-cost 
embedded platforms for smartphones are already equipped with a mobile GPU e.g. (TI 
OMAP 3/4 or Nvidia Tegra 2). The next generation On Board Units (OBUs) for in car 
navigation are designed around these cost effective parallel platforms. Therefore is expected 
that real-time recognition systems can be deployed in the automotive market directly. This 
should improve safety on the roads and the driver receives less speeding tickets if he obeys 
to the directions of the OBU. 
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