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Introduction - overview Suitable software

* A GPU is a parallel co-processor for a CPU, doing one task at a time.
* A GPU consists of ~32 multi-processors (MP)
- Single Tasking - Multiprocessing
Algorithm in principle suitable? + A multi-processor is a SIMD processor
— 8xin HW, 32x fault in SW (4-stage pipeline).
» 1 algorithm applied in parallel to multi-data sets
— Multi-threading: all threads execute the same code.
— Vector processor is therefore a better description.
» Data-dependent if-then-else : MP serializes then + else (unless ....)
» Sorting / filtering based on ITE less suitable (alike control SW)
->Number crunching

Optimization: exploit processing potential:
Remove bottlenecks.
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Suitable parallelism Global Modeling of Algorithms: intro and example

Estimation of degree of suitable number of data sets Convention: device = graphics card, host = PC cpu.
* HW-Theoretical: 32 x 32 = 1000

« Overhead sources are relatively large (but undocumented), e.g., GPU (Tesla C1060) hardware characteristics
~ GPU data loading * 1 TFLOPS max (~87 GFLOPS for double precision) | 29 DYBS Per

— GPU code loading (kernel) and kernel invocations + Data rate ~100 GB/s max (device transfers)
— PC driver cost (~ 10 - 30 us =30 MFLOP on Tesla) » Data rate ~3 GB/s max (device-host transfers)
» Practical required degree of parallelism: >> 1.000, e.g. 30.000+ Simple example: C = A + B (large n x n matrices, massive parallel)
— Depends on typical gpu-job time 3 device-host word transfers, 3 word device transfers, 1 FLOP per word.
Device — host transfer utilization: 1, i.e., 0.75 G Cij per second.
->Massive parallel greedy number crunching jobs Device transfer utilization: 0.033
FLOPS utilization: 0.75 x10°¢
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Global Modeling of Algorithms — simple example Global Modeling — single precision
* Is a GPU suitable to calculate matrix C = A+B ? GPU characteristic for single precision:

* ~1 TFLOPS max

Yes » Data rate ~25 G words/s max (device transfers)

» Data rate ~0.75 G words/s max (device-host transfers)

+ Exploiting 10°¢ of the FLOP potential only. Key is the number of times a single data element is used in calculations
* When on device: ~40 calculations per data element required,
* When on host: ~1300 calculations per data element required ..
before the calculation capacity becomes the bottleneck.
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Global Modeling: boundaries Global modeling — steps and target

Calculation

bottleneck Analyze essence of the algorithm Target
* Derive essential parallelism >> 1000
* Calculations ~TFLOPS
1000 -
Device Data « Data reference patterns:
Transfer
o Limi — data element refs ~40 dev, ~1300 host
[a imit
o]
-
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o Host-device
Data
0 Transfer

03 Limit
Data transfers (GB/s)
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Global modeling — steps — how to

» Derive essential parallelism
— Outer loops may be parallelized

» Computations (limited focus in this phase)

+ Data reference patterns
— optimize dataref reuse
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Data referencing - examples

Algorithm: host-dev device
« Matrix addition, subtraction, transposition: no advantage

« Matrix multiplication O(n%)-> n2 per element n >~ 20 n>~5
+ Solve linear equations O(n%)-> n? per element n > ~ 20 n>-~5
* 2D FFT O(n2log n) = 5nlog n per element n >~ 32 n>~4

The overhead per invocation is so large, that the first part of the range
only applies when multiple matrices are handled per invocation.

Complex number calculations are more suitable: mult/div uses data twice.
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Summary of candidate SW

» Massive Parallel (>> 1000, e.g. 30.000)

» Computations (~ Teraflops)

« Data transfer is typically the major bottleneck, suitable algorithms have

* many calculations per data element (~1000 per i/o, ~30 per device elt)

* GPU Jobsize should be substantial w.r.t. invocation overhead.

« Set of algorithms of which data resides on the device increases suitability
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Global modeling — data reference optimization

Data reference pattern optimization:
» Reuse coefficients

» Reuse power calculations

* Reuse cross-terms

This is the reason why per processor thousands registers are available,
next to the ‘shared memory’.
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Practice: Sequence of algorithms

‘@ D)

Host to device

Repeat * Ineffective GPU alg’s can be useful
to prevent dev-host communication.
Alg 1 P

Alg 2 « Despite multiple kernel invocations

Alg 3 » Real iterating algorithms enhance
Alg 4 greediness and limit dev-host

- communication.
until(converged)

G Device to host
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Next phase: optimization

Algorithm in principle suitable?

Optimization: exploit processing potential:
Remove bottlenecks.
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Optimization

« This part requires explaining the 10 bottlenecks of a GPU.
* How to bypass them.

A bit too much for now. It is in the optimization course.

» How to recognize a bottleneck is relatively simple, after the suitability of
the algorithm has been investigated.
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Optimization — some remarks

« Direct C to Cuda translation is easy, but is non-optimized.
— Marketing of how easy and generic CUDA is, shoots in the foot.
— Available numerical libraries quality is work-in-progress.
— Positive impression of the support by nVidia.

« Potentially suitable algorithm typically required a complete reordering /
rewriting, resulting in a speedup of factors ~100 w.r.t. first version, both
for single- and double precision.
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Optimizations: how to recognize a bottleneck

1000

%]

a

(o]

—

[

O]

® theory
0 - measured
03 100
Data transfers (GB/s)
Ton Kostelijk Philips Applied Technologies. 20
PHILIPS
Conclusions

Ton Kostelijk

GPU is suitable for running extremely greedy calculations
that run massively parallel, with limited cpu to gpu memory
transfers, and lots of calculations per data element.

Global modeling of an algorithm gives potential suitability,
without knowledge of GPU internals.

Though CUDA hardly contains hardware specifics, real
performance requires in-depth understanding how CUDA
runs in hardware, what are the bottlenecks.

It's easy to notice if one suffers from a bottleneck.
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