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Personal introduction

Experience within Philips (focused on technical part)

• Professional systems (mostly PC based) 

• Real-time embedded consumer systems

• IC-design SW, NP-complete algorithms 

Teaching:

• Execution Architecture course

• SW reliability

• 3TU / OOTI – embedded computing platform

Leading the Apptech Performance team 
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Introduction

• Main GPU experience: nVidia, G80, Tesla, CUDA. 

 Advanced GPU optimization course for performance team

• This talk is 25 minutes: select and focus

– GPU, GPGPU: General Purpose is an overstatement, so

– Determination of suitable software  suitable algorithm

– A suitable algorithm is fast and energy efficient.

• Skip a lot of GPU introduction, given previous speakers presentations.
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Introduction - overview

Algorithm in principle suitable?

Optimization: exploit processing potential:

Remove bottlenecks.
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Suitable software

• A GPU is a parallel co-processor for a CPU, doing one task at a time.

• A GPU consists of ~32 multi-processors (MP)

Single Tasking - Multiprocessing

• A multi-processor is a SIMD processor 

– 8x in HW, 32x fault in SW (4-stage pipeline).

• 1 algorithm applied in parallel to multi-data sets

– Multi-threading: all threads execute the same code. 

– Vector processor is therefore a better description.

• Data-dependent if-then-else : MP serializes then + else  (unless ….)

• Sorting / filtering based on ITE less suitable (alike control SW)

Number crunching
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Suitable parallelism

Estimation of degree of suitable number of data sets

• HW-Theoretical: 32 x 32 ≈ 1000

• Overhead sources are relatively large (but undocumented), e.g., 

– GPU data loading

– GPU code loading (kernel) and kernel invocations

– PC driver cost (~ 10 - 30 us  = 30 MFLOP on Tesla)

• Practical required degree of parallelism: >> 1.000,  e.g. 30.000+ 

– Depends on typical gpu-job time

Massive parallel greedy number crunching jobs
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Global Modeling of Algorithms: intro and example

Convention: device = graphics card, host = PC cpu.

GPU (Tesla C1060) hardware characteristics

• 1 TFLOPS max (~87 GFLOPS for double precision)

• Data rate ~100 GB/s max (device transfers) 

• Data rate ~3 GB/s max (device-host transfers)

Simple example: C = A + B (large n x n matrices, massive parallel)

3 device-host word transfers, 3 word device transfers, 1 FLOP per word.

Device – host transfer utilization: 1, i.e., 0.75 G Cij per second. 

Device transfer utilization: 0.033

FLOPS utilization: 0.75 x10-6
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Global Modeling of Algorithms – simple example

• Is a GPU suitable to calculate matrix C = A+B ?

• Exploiting 10-6 of the FLOP potential only.
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Global Modeling – single precision

GPU characteristic for single precision:

• ~1 TFLOPS max

• Data rate ~25 G words/s max (device transfers)

• Data rate ~0.75 G words/s max (device-host transfers)

Key is the number of times a single data element is used in calculations

• When on device: ~40 calculations per data element required,

• When on host: ~1300 calculations per data element required ..

before the calculation capacity becomes the bottleneck.
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Global Modeling: boundaries
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Global modeling – steps and target

Analyze essence of the algorithm Target

• Derive essential parallelism >> 1000

• Calculations ~TFLOPS

• Data reference patterns: 

– data element refs ~40 dev, ~1300 host
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Global modeling – steps – how to

• Derive essential parallelism

– Outer loops may be parallelized

• Computations (limited focus in this phase)

• Data reference patterns

– optimize dataref reuse
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Global modeling – data reference optimization

Data reference pattern optimization:

• Reuse coefficients

• Reuse power calculations

• Reuse cross-terms

..

This is the reason why per processor thousands registers are available, 

next to the ‘shared memory’.
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Data referencing - examples

Algorithm: host-dev device

• Matrix addition, subtraction, transposition: no advantage

• Matrix multiplication O(n3) n2 per element n > ~ 20 n > ~ 5

• Solve linear equations O(n3) n2 per element n > ~ 20 n > ~ 5

• 2D FFT  O(n2log n)  5 n log n per element n > ~ 32 n > ~ 4

…

The overhead per invocation is so large, that the first part of the range 

only applies when multiple matrices are handled per invocation. 

Complex number calculations are more suitable:  mult/div uses data twice.
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Practice: Sequence of algorithms

• Ineffective GPU alg’s can be useful 

to prevent dev-host communication.

• Despite multiple kernel invocations

• Real iterating algorithms enhance 

greediness and limit dev-host 

communication. 
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Host to device

Repeat

Alg 1
Alg 2

Alg 3
Alg 4

..
until(converged)

Device to host
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Summary of candidate SW

• Massive Parallel (>> 1000, e.g. 30.000)

• Computations (~ Teraflops)

• Data transfer is typically the major bottleneck, suitable algorithms have

• many calculations per data element (~1000 per i/o, ~30 per device elt)

• GPU Jobsize should be substantial w.r.t. invocation overhead.

• Set of algorithms of which data resides on the device increases suitability
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Next phase: optimization

Algorithm in principle suitable?

Optimization: exploit processing potential:

Remove bottlenecks.
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Optimization

• This part requires explaining the 10 bottlenecks of a GPU.

• How to bypass them. 

• A bit too much for now. It is in the optimization course.

• How to recognize a bottleneck is relatively simple, after the suitability of 

the algorithm has been investigated.
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Optimizations: how to recognize a bottleneck
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Optimization – some remarks

• Direct C to Cuda translation is easy, but is non-optimized.

– Marketing of how easy and generic CUDA is, shoots in the foot. 

– Available numerical libraries quality is work-in-progress. 

– Positive impression of the support by nVidia.

• Potentially suitable algorithm typically required a complete reordering / 

rewriting, resulting in a speedup of factors ~100 w.r.t. first version, both 

for single- and double precision. 
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Conclusions

• GPU is suitable for running extremely greedy calculations  

that run massively parallel, with limited cpu to gpu memory 

transfers, and lots of calculations per data element.

• Global modeling of an algorithm gives potential suitability, 

without knowledge of GPU internals.

• Though CUDA hardly contains hardware specifics, real 

performance requires in-depth understanding how CUDA 

runs in hardware, what are the bottlenecks.

• It’s easy to notice if one suffers from a bottleneck.
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