
Applying GPUs for massive calculations
Determination of suitable applications

September 2010

by Dr. A.P. Kostelijk

Ton Kostelijk Philips Applied Technologies

Personal introduction

Experience within Philips (focused on technical part)

• Professional systems (mostly PC based)

• Real-time embedded consumer systems

• IC-design SW, NP-complete algorithms

Teaching:

• Execution Architecture course

• SW reliability

• 3TU / OOTI – embedded computing platform

Leading the Apptech Performance team

2

Ton Kostelijk Philips Applied Technologies

Contents

1. Introduction

2. Suitable software

3. Suitable parallelism

4. Global modeling of algorithms

– Intro & example

– Steps, targets, how-to

– Practice

5. Optimization, recognizing a bottleneck

6. Conclusion

3 Ton Kostelijk Philips Applied Technologies

Introduction

• Main GPU experience: nVidia, G80, Tesla, CUDA.

 Advanced GPU optimization course for performance team

• This talk is 25 minutes: select and focus

– GPU, GPGPU: General Purpose is an overstatement, so

– Determination of suitable software  suitable algorithm

– A suitable algorithm is fast and energy efficient.

• Skip a lot of GPU introduction, given previous speakers presentations.

4

Ton Kostelijk Philips Applied Technologies

Introduction - overview

Algorithm in principle suitable?

Optimization: exploit processing potential:

Remove bottlenecks.

5 Ton Kostelijk Philips Applied Technologies

Suitable software

• A GPU is a parallel co-processor for a CPU, doing one task at a time.

• A GPU consists of ~32 multi-processors (MP)

Single Tasking - Multiprocessing

• A multi-processor is a SIMD processor

– 8x in HW, 32x fault in SW (4-stage pipeline).

• 1 algorithm applied in parallel to multi-data sets

– Multi-threading: all threads execute the same code.

– Vector processor is therefore a better description.

• Data-dependent if-then-else : MP serializes then + else (unless ….)

• Sorting / filtering based on ITE less suitable (alike control SW)

Number crunching

6

‘kernel’

Ton Kostelijk Philips Applied Technologies

Suitable parallelism

Estimation of degree of suitable number of data sets

• HW-Theoretical: 32 x 32 ≈ 1000

• Overhead sources are relatively large (but undocumented), e.g.,

– GPU data loading

– GPU code loading (kernel) and kernel invocations

– PC driver cost (~ 10 - 30 us = 30 MFLOP on Tesla)

• Practical required degree of parallelism: >> 1.000, e.g. 30.000+

– Depends on typical gpu-job time

Massive parallel greedy number crunching jobs

7 Ton Kostelijk Philips Applied Technologies

Global Modeling of Algorithms: intro and example

Convention: device = graphics card, host = PC cpu.

GPU (Tesla C1060) hardware characteristics

• 1 TFLOPS max (~87 GFLOPS for double precision)

• Data rate ~100 GB/s max (device transfers)

• Data rate ~3 GB/s max (device-host transfers)

Simple example: C = A + B (large n x n matrices, massive parallel)

3 device-host word transfers, 3 word device transfers, 1 FLOP per word.

Device – host transfer utilization: 1, i.e., 0.75 G Cij per second.

Device transfer utilization: 0.033

FLOPS utilization: 0.75 x10-6

8

20 DVDs per

second

Ton Kostelijk Philips Applied Technologies

Global Modeling of Algorithms – simple example

• Is a GPU suitable to calculate matrix C = A+B ?

• Exploiting 10-6 of the FLOP potential only.

9

Yes No

Ton Kostelijk Philips Applied Technologies

Global Modeling – single precision

GPU characteristic for single precision:

• ~1 TFLOPS max

• Data rate ~25 G words/s max (device transfers)

• Data rate ~0.75 G words/s max (device-host transfers)

Key is the number of times a single data element is used in calculations

• When on device: ~40 calculations per data element required,

• When on host: ~1300 calculations per data element required ..

before the calculation capacity becomes the bottleneck.

10

Ton Kostelijk Philips Applied Technologies

Global Modeling: boundaries

11

G
F

L
O

P
S

Data transfers (GB/s)

1000

0
1000 3

Host-device

Data

Transfer

Limit

Calculation

bottleneck

Device Data

Transfer

Limit

Ton Kostelijk Philips Applied Technologies

Global modeling – steps and target

Analyze essence of the algorithm Target

• Derive essential parallelism >> 1000

• Calculations ~TFLOPS

• Data reference patterns:

– data element refs ~40 dev, ~1300 host

12

Ton Kostelijk Philips Applied Technologies

Global modeling – steps – how to

• Derive essential parallelism

– Outer loops may be parallelized

• Computations (limited focus in this phase)

• Data reference patterns

– optimize dataref reuse

13 Ton Kostelijk Philips Applied Technologies

Global modeling – data reference optimization

Data reference pattern optimization:

• Reuse coefficients

• Reuse power calculations

• Reuse cross-terms

..

This is the reason why per processor thousands registers are available,

next to the ‘shared memory’.

14

Ton Kostelijk Philips Applied Technologies

Data referencing - examples

Algorithm: host-dev device

• Matrix addition, subtraction, transposition: no advantage

• Matrix multiplication O(n3) n2 per element n > ~ 20 n > ~ 5

• Solve linear equations O(n3) n2 per element n > ~ 20 n > ~ 5

• 2D FFT O(n2log n)  5 n log n per element n > ~ 32 n > ~ 4

…

The overhead per invocation is so large, that the first part of the range

only applies when multiple matrices are handled per invocation.

Complex number calculations are more suitable: mult/div uses data twice.

15 Ton Kostelijk Philips Applied Technologies

Practice: Sequence of algorithms

• Ineffective GPU alg’s can be useful

to prevent dev-host communication.

• Despite multiple kernel invocations

• Real iterating algorithms enhance

greediness and limit dev-host

communication.

16

Host to device

Repeat

Alg 1
Alg 2

Alg 3
Alg 4

..
until(converged)

Device to host

Ton Kostelijk Philips Applied Technologies

Summary of candidate SW

• Massive Parallel (>> 1000, e.g. 30.000)

• Computations (~ Teraflops)

• Data transfer is typically the major bottleneck, suitable algorithms have

• many calculations per data element (~1000 per i/o, ~30 per device elt)

• GPU Jobsize should be substantial w.r.t. invocation overhead.

• Set of algorithms of which data resides on the device increases suitability

17 Ton Kostelijk Philips Applied Technologies

Next phase: optimization

Algorithm in principle suitable?

Optimization: exploit processing potential:

Remove bottlenecks.

18

Ton Kostelijk Philips Applied Technologies

Optimization

• This part requires explaining the 10 bottlenecks of a GPU.

• How to bypass them.

• A bit too much for now. It is in the optimization course.

• How to recognize a bottleneck is relatively simple, after the suitability of

the algorithm has been investigated.

19 Ton Kostelijk Philips Applied Technologies

Optimizations: how to recognize a bottleneck

20

G
F

L
O

P
S

Data transfers (GB/s)

1000

0
1000 3

• theory

 measured

Ton Kostelijk Philips Applied Technologies

Optimization – some remarks

• Direct C to Cuda translation is easy, but is non-optimized.

– Marketing of how easy and generic CUDA is, shoots in the foot.

– Available numerical libraries quality is work-in-progress.

– Positive impression of the support by nVidia.

• Potentially suitable algorithm typically required a complete reordering /

rewriting, resulting in a speedup of factors ~100 w.r.t. first version, both

for single- and double precision.

21 Ton Kostelijk Philips Applied Technologies

Conclusions

• GPU is suitable for running extremely greedy calculations

that run massively parallel, with limited cpu to gpu memory

transfers, and lots of calculations per data element.

• Global modeling of an algorithm gives potential suitability,

without knowledge of GPU internals.

• Though CUDA hardly contains hardware specifics, real

performance requires in-depth understanding how CUDA

runs in hardware, what are the bottlenecks.

• It’s easy to notice if one suffers from a bottleneck.

22

Ton Kostelijk Philips Applied Technologies

