Applying GPUs for massive calculations
Determination of suitable applications

September 2010
by Dr. A.P. Kostelijk

Contents
1. Introduction
2. Suitable software
3. Suitable parallelism
4. Global modeling of algorithms
 – Intro & example
 – Steps, targets, how-to
 – Practice
5. Optimization, recognizing a bottleneck
6. Conclusion

Introduction
• Main GPU experience: nVidia, G80, Tesla, CUDA.
 \[\rightarrow\] Advanced GPU optimization course for performance team
• This talk is 25 minutes: select and focus
 – GPU, GPGPU: General Purpose is an overstatement, so
 – Determination of suitable software \(\rightarrow\) suitable algorithm
 – A suitable algorithm is fast and energy efficient.
• Skip a lot of GPU introduction, given previous speakers presentations.

Suitable software
• A GPU is a parallel co-processor for a CPU, doing one task at a time.
• A GPU consists of \(\sim\)32 multi-processors (MP)
 \[\rightarrow\] Single Tasking - Multiprocessing
• A multi-processor is a SIMD processor
 – 8x in HW, 32x fault in SW (4-stage pipeline).
• 1 algorithm applied in parallel to multi-data sets
 – Multi-threading: all threads execute the same code.
 – Vector processor is therefore a better description.
• Data-dependent if-then-else : MP serializes then + else (unless ...
• Sorting / filtering based on ITE less suitable (alike control SW)
 \[\rightarrow\] Number crunching
PHILIPS
Suitable parallelism

Estimation of degree of suitable number of data sets
• HW-Theoretical: 32 x 32 ≈ 1000
• Overhead sources are relatively large (but undocumented), e.g.,
 – GPU data loading
 – GPU code loading (kernel) and kernel invocations
 – PC driver cost (~ 10 - 30 us = 30 MFLOP on Tesla)
• Practical required degree of parallelism: >> 1.000, e.g. 30.000+
 – Depends on typical gpu-job time
 ➔ Massive parallel greedy number crunching jobs

PHILIPS
Global Modeling of Algorithms – simple example

• Is a GPU suitable to calculate matrix C = A+B ?
 Yes
 No
 • Exploiting 10⁻⁶ of the FLOP potential only.

PHILIPS
Global Modeling: boundaries

Calculation bottleneck
Device Data Transfer Limit
Host-device Data Transfer Limit

PHILIPS
Global Modeling of Algorithms: intro and example

Convention: device = graphics card, host = PC cpu.

GPU (Tesla C1060) hardware characteristics
• 1 TFLOPS max (~87 GFLOPS for double precision)
• Data rate ~100 GB/s max (device transfers)
• Data rate ~3 GB/s max (device-host transfers)

Simple example: C = A + B (large n x n matrices, massive parallel)
3 device-host word transfers, 3 word device transfers, 1 FLOP per word.
Device – host transfer utilization: 1, i.e., 0.75 G Cij per second.
Device transfer utilization: 0.033
FLOPS utilization: 0.75 x 10⁻⁶

PHILIPS
Global Modeling – single precision

GPU characteristic for single precision:
• ~1 TFLOPS max
• Data rate ~25 G words/s max (device transfers)
• Data rate ~0.75 G words/s max (device-host transfers)

Key is the number of times a single data element is used in calculations
• When on device: ~40 calculations per data element required,
• When on host: ~1300 calculations per data element required ...
 before the calculation capacity becomes the bottleneck.

PHILIPS
Global modeling – steps and target

Analyze essence of the algorithm
• Derive essential parallelism
• Calculations
• Data reference patterns:
 – data element refs
 ➔ 40 dev, ~1300 host
PHILIPS

Global modeling – steps – how to

• Derive essential parallelism
 – Outer loops may be parallelized

• Computations (limited focus in this phase)

• Data reference patterns
 – optimize dataref reuse

PHILIPS

Data reference optimization:

• Reuse coefficients
• Reuse power calculations
• Reuse cross-terms

This is the reason why per processor thousands registers are available, next to the 'shared memory'.

PHILIPS

Data referencing - examples

Algorithm: host-dev device

• Matrix addition, subtraction, transposition: no advantage
• Matrix multiplication $O(n^2)$ n^2 per element $n > \sim 20$ $n > \sim 5$
• Solve linear equations $O(n^2)$ n^2 per element $n > \sim 20$ $n > \sim 5$
• 2D FFT $O(n \log n)$ $5 n \log n$ per element $n > \sim 32$ $n > \sim 4$

... The overhead per invocation is so large, that the first part of the range only applies when multiple matrices are handled per invocation.

Complex number calculations are more suitable: mult/div uses data twice.

PHILIPS

Summary of candidate SW

• Massive Parallel ($>> 1000$, e.g. 30,000)
• Computations (~ Teraflops)
• Data transfer is typically the major bottleneck, suitable algorithms have many calculations per data element (~1000 per i/o, ~30 per device elt)
• GPU Jobsize should be substantial w.r.t. invocation overhead.
• Set of algorithms of which data resides on the device increases suitability

PHILIPS

Next phase: optimization

Algorithm in principle suitable?

Optimization: exploit processing potential: Remove bottlenecks.
This part requires explaining the 10 bottlenecks of a GPU.

• How to bypass them.

• A bit too much for now. It is in the optimization course.

• How to recognize a bottleneck is relatively simple, after the suitability of the algorithm has been investigated.

Direct C to Cuda translation is easy, but is non-optimized.
- Marketing of how easy and generic CUDA is, shoots in the foot.
- Available numerical libraries quality is work-in-progress.
- Positive impression of the support by nVidia.

Potentially suitable algorithm typically required a complete reordering / rewriting, resulting in a speedup of factors ~100 w.r.t. first version, both for single- and double precision.

GPU is suitable for running extremely greedy calculations that run massively parallel, with limited cpu to gpu memory transfers, and lots of calculations per data element.

• Global modeling of an algorithm gives potential suitability, without knowledge of GPU internals.

• Though CUDA hardly contains hardware specifics, real performance requires in-depth understanding how CUDA runs in hardware, what are the bottlenecks.

It’s easy to notice if one suffers from a bottleneck.