
Parallellization of C code
Jos van Eijndhoven

jos@vectorfabrics.com

GPU symposium at TUE
Sept. 1, 2010

2 | Sep. 1, 2010

Introducing myself

Completed my PhD on this TUE in 1984. Worked in
the EE dept. until 1996. Did a sabbatical in IBM T.J.
Watson Research Center, pioneering high-level
synthesis.
Moved to Philips Research to work on programmable
media processing architectures, covering processor
architectures, compilation techniques, video-domain
applications. Joined the corporate patent portfolio
review team. Cooperated with Philips' IC design team
in San Jose, CA.
Co-founder of 'Vector Fabrics' in 2007. Vector Fabrics
creates tools for embedded system design, covering
the path from C-code input to system HW architecture
and embedded software output.
Published about 100 scientific publications, holds 14
worldwide patents.

3 | Sep. 1, 2010

Presentation summary

C language: memory, dataflow, control flow
Loop-based parallellizations
Data dependencies that hinder parallelization
Handling / resolving data dependencies
Tooling support for parallellization
Conclusion

4 | Sep. 1, 2010

The C language: sequential by nature

Procedural (imperative) programming language:
 - State in variables / memory locations
 - Data flow (value assignment & use through expressions)
 - Control flow (loops, conditionals, function calls)
Strictly sequential semantics by nature of 'State'.

Alleviation of the sequential nature requires knowledge of
data-flow between memory locations.

5 | Sep. 1, 2010

Inter-thread data dependencies

Control
flow

Thread 1 Thread 1 Thread n

Initialization code

Finalization code

Data
flow

fork

join

Fine Inter-thread dependencies
might cause trouble...

Analysis of data-dependencies, compile-time static or run-time dynamic,
is an active research area...

6 | Sep. 1, 2010

Parallellization: threads from loops

Partition the compute load, such that parts can be distributed
over concurrent processors.
Partitioning almost directly leads to investigation of loops:
- Loops contain most of the workload
- Loops provide nice opportunity for distributing pieces of work
Typically, a loop induction variable needs to be captured
together with its induction expression. This allows explicit
derivation of loop indexes. The induction variable itself is
exempt from the loop-carried data dependencies.
For parallellization, literature distinguishes between:
 - Loop distribution: Partition body in pieces, keep index space
 - Loop splitting: Keep body, partition loop index space.

7 | Sep. 1, 2010

Loop distribution

Might need to synchronize
data from production to
consumption...

Depicts ideal distribution:
 - good load balance
 - no data dependencies

8 | Sep. 1, 2010

Loop splitting

Implemented as loop unrolling followed by loop distribution:

Or implemented directly:

9 | Sep. 1, 2010

Loop carried data dependencies (RaW)

Read-after-Write ('true') dependency
Requires data communication and synchronization
Reduces available parallellism

10 | Sep. 1, 2010

Other dependency types

Write-after-Read (anti-)dependency:
Data must be consumed before it can be over-written.

Write-after-Write (output-)dependency:
Data must be over-written in proper order

In general, these types of dependencies also:
Require data synchronization
Reduce available parallellism

11 | Sep. 1, 2010

Data-flow versus memory dependencies

Data-flow dependencies relate to consumption and production
of scalar values in expressions. These values are mapped by
the C-compiler in registers. Mapping to registers involves a
classic (static) life-time analysis. Accessing these values does
not involve load/store operations.
Memory dependencies relate to accessing values on a
particular address in memory through load/store operations.

Unfortunately, there is no standard/direct relation between C
code syntax and mapping to registers versus memory.

time

Execution of load operations and store operations

Data-flow dependencies

Memory dependencies

12 | Sep. 1, 2010

Capturing data-dependencies is hard

In real-world C programs, capturing data dependencies is hard:
Dependencies occur between stores and loads beyond
function- and file-boundaries, beyond the scope of the C
compiler.
Beyond file boundaries, the linker decides on mapping of
variable-names and function-names. Linker semantics is
tricky.
Due to data-dependent control and/or pointer arguments,
multiple invocations of the same function result in different
dependency patterns.
With data-dependent control, the discovered dependencies
depend upon the actual application input test data.
Dependency analysis should cover basic C libraries,
supporting e.g. malloc(), memcpy(), read(), write(), ...

13 | Sep. 1, 2010

Resolving data dependencies (1)

Typically, many data dependencies can be removed.
Those are just a side-effect of an unfortunate
implementation, NOT essential for the algorithm.

E.g.: replace a linked-list datastructure ('p = p→next')
by an array with object pointers ('p = elem[i];'),
in which 'i' is (derived from) the loop induction variable.

Clearly, this can be a significant task...
Obviously, removing all inter-thread dependencies allows
the creation of an optimal parallel system....

14 | Sep. 1, 2010

Resolving data dependencies (2)

Some remaining data-dependencies are irrelevant:
their ordering does not affect application semantics.

E.g.1: 'a[i] = malloc(sizeof(..));'
The implementation of malloc has internal (global)
variables that create dependencies between successive
calls.

E.g.2: a thread stores its final result by attaching it to
some global datastructure.

Typically, such dependencies are resolved by protecting
critical code sections against multi-entrant execution:
Different threads can then execute such code without
global ordering constraints.
The penalty on overall completion time might be low.

15 | Sep. 1, 2010

Resolving data dependencies (3)

Some data-dependencies are essential for the
algorithm.

True data dependencies must be honoured by
correct scheduling (static or run-time dynamic schedules).
Anti-dependencies might be (partially) resolved by
duplicating storage locations.

A proven method to simultaneously resolve anti-
dependencies and run-time scheduling is the introduction of
explicit (FIFO-buffered) communication channels, leading to
process networks:
A 'producer' can write several copies of a variable into the
channel before the 'consumer' reads them.

Otherwise, memory-mapped semaphores are used to control
inter-thread communication.

16 | Sep. 1, 2010

Vector Fabrics' tooling (1: Compilation)

Compile C program to proprietary format:
Control-Data-Flow graphs per function and
per source-file.
Perform static dataflow analysis
Keep links to C text.

17 | Sep. 1, 2010

Vector Fabrics' tooling (2: Analysis)

Execute program in 'sandbox' environment
Build 'profile' execution tree
Gather (runtime) memory-dependencies

18 | Sep. 1, 2010

Vector Fabrics' tooling (3: Xform, Output)

Code transformations to enable parallellism (target dependent):
Insert Fork/Join of threads
Insert Channel read/writes, Semaphore acquire/release
Modify allocation of variables

Create output text:
Generic C source code, for mapping to CPU's
Verilog code for mapping of a thread to (FPGA-) hardware
OpenCL for threads mapped to GFX hardware??

19 | Sep. 1, 2010

Conclusions

C is a relatively simple programming language with mature
and advanced compilation technology.
Data-flow analysis is still a hard problem, in particular for
applications with irregular behavior.
(this is an application problem, not a language problem)
Tooling for creating parallellism, by automatic C-to-C
transformations, is still in its infancy.

C-based tooling for parallellisation allows that:
The application programmer creates sequential C code,
which is easier and less error-prone.
Tooling creates a target-dependent parallel output, analysed
for safe behavior.

Questions?

