Student assignment

Type: Graduation assignment
Contact: Mark Wijtvliet (m.wijtvliet@tue.nl)

Topic: investigation of fault-tolerance on a coarse grained reconfigurable architecture.

Background:
At the electronic systems group we developed a very low-energy reconfigurable processor called Blocks. This processor outperforms a traditional microcontroller in performance with up to two orders of magnitude and typically uses approximately an order of magnitude lower energy to execute an application. Blocks achieves this by reconfiguring its hardware at runtime to match the properties of the application. If the application contains a lot of data parallelism then Blocks will be configured to form a vector processor, if there is instruction level parallelism then Blocks will form a VLIW processor. Anything in between, or even very application dependent structures (e.g. FFT or reduction trees) are also possible. By doing this cycles and memory accesses can be reduced significantly, leading to a much lower energy.

There are cases where just energy efficient processing alone is not sufficient. Automotive and aerospace applications, for example, require a very high reliability of the architecture in conditions such as high electromagnetic noise, particle strikes, etc. This project is all about investigating fault tolerance techniques on Blocks. During this project you will:

- Investigate the state of the art in fault-tolerance on CGRAs.
- Determine how fault-tolerance can be efficiently applied to Blocks.
- Investigate improvements to the state of the art of fault-tolerance on CGRAs by using the architectural properties of Blocks.
- Implement the most promising option(s) and verify your estimations.

If you are interested in this assignment, or have some questions, please come around to have a chat.