Student assignment

Type: Graduation assignment
Contact: Mark Wijtvliet (m.wijtvliet@tue.nl)

Topic: investigation of multi-core processing on a coarse grained reconfigurable architecture.

Background:
At the electronic systems group we developed a very low-energy reconfigurable processor called Blocks. This processor outperforms a traditional microcontroller in performance with up to two orders of magnitude and typically uses approximately an order of magnitude lower energy to execute an application. Blocks achieves this by reconfiguring its hardware at runtime to match the properties of the application. If the application contains a lot of data parallelism then Blocks will be configured to form a vector processor, if there is instruction level parallelism then Blocks will form a VLIW processor. Anything in between, or even very application dependent structures (e.g. FFT or reduction trees) are also possible. By doing this cycles and memory accesses can be reduced significantly, leading to a much lower energy.

Many applications contain task level parallelism. This type of parallelism can be efficiently implemented on multi-core systems. Blocks allows multiple independent program counters to be generated and thus multiple independent processors to be instantiated. The goal of this project is to develop and investigate an efficient way of performing these kind of applications on the Blocks fabric. In this project you will:

- Investigate the state of the art in multi-core processing on CGRAs.
- Determine how multi-core processing can be efficiently applied to Blocks.
- Investigate improvements to the state of the art of multi-core processing on CGRAs by using the architectural properties of Blocks.
- Implement the most promising option(s) and verify your estimations.

If you are interested in this assignment, or have some questions, please come around to have a chat.