
Efficient mapping of the training of Convolutional
Neural Networks to a CUDA-based cluster

Jonatan Ward Sergey Andreev Francisco Heredia Bogdan Lazar Zlatka Manevska
Eindhoven University of Technology, The Netherlands

http://parse.ele.tue.nl
{j.j.ward, s.andreev, f.j.heredia.soriano, b.m.lazar, z.manevska}@tue.nl

Abstract
We propose a method to parallelize the training of a convolutional
neural network by using a CUDA-based cluster. We attain a sub-
stantial increase in the performance of the algorithm itself. We re-
search the feasibility of using batch versus online mode training and
provide a performance comparison between them. Furthermore, we
propose an implementation of an alternative algorithm to compute
local gradients which increases the level of parallelism. To con-
clude, we give a set of best practices for implementing Convolu-
tional Neural Networks on the cluster.

Categories and Subject Descriptors C.1.4 [Processor Archi-
tectures]: Parallel Architectures; C.4 [Performance of Systems]:
Modeling Techniques

General Terms Performance

Keywords GPU, CNN, Neural Networks

1. Introduction
This paper presents a solution that uses GPUs to take advantage of
the inherent parallelism available when training neural networks.
The focus is put on a Convolutional Neural Network (CNN) used
for visual object recognition. Online- and batch-mode learning
methods were implemented and the results from the two methods
are presented and compared.

1.1 Cluster description
The cluster used in this project contains four nodes. Each node has
a Intel Core i7 960 (3.20 GHz) processor, 12 GB of main memory
and four NVIDIA GTX570 graphical processor units (GPUs). The
graphical processors are connected via PCI Express 2.0. The nodes
are interconnected via Gigabit Ethernet (1Gb/s).

1.2 Convolutional neural networks
Artificial Neural Networks (ANNs) have emerged as a powerful
technique in machine learning for solving various practical prob-
lems like pattern classification and recognition, medical imaging,
speech recognition and control.

[Copyright notice will appear here once ’preprint’ option is removed.]

A Convolutional Neural Network (CNN) is an extension of an
ANN optimized for two-dimensional pattern recognition because
it uses shared weights and less connections, which greatly reduces
the solution space. The architecture of a CNN is shown in Figure 1.

The biggest problem with using a CNN is the long training time
since it is computationally intensive. Training with large data sets
could take up to several days or weeks.

Since the training involves big amounts of floating-point opera-
tions in every training step, it is well suited for running on modern
graphical processing units (GPUs).

Figure 1. Convolutional neural network architecture [3]

2. Solution
The process of CNN online training consists of the following
phases: convolution phase, compute local gradients phase and up-
date weights phase. A training epoch is the exposition of a training
set to the neural network. In this particular case, an epoch is com-
prised of a set of image patterns. Each pattern in the epoch goes
through those phases and updates the network weights.

After one epoch iteration, the network is tested by running the
convolution phase on test patterns and the error is computed.

After profiling the CPU reference implementation, the results
showed that 59% of all computations goes to the convolution phase,
28% to the compute local gradients phase and 11% is spent on the
update weights phase.

2.1 Used parallelism
The general approach to parallelization was splitting the image in
tiles that are represented by thread blocks per output feature map.
This division is represented in Figure 2. Each tile is analogous to a
thread block, and each pixel is represented by a thread. We also use
a three-dimensional grid: its x, y and z dimensions are represented
by the feature maps’ width, height, and quantity, respectively.

Convolution phase
Convolution is done using the general approach described above.
Each convolution operation is applied per convolution kernel,

1 2011/12/8



Figure 2. Image tile processing

therefore adding additional loops inside each CUDA kernel was
required. As a result of this, the performance on the GPU is af-
fected. In order to mitigate this and given the relatively small size
of the loops, they were unrolled using boost preprocessor library.

The convolution phase applies the sigmoid activation function
at the end. That function updates the value of every pixel using
formula (1).

1

1 + e−x
(1)

Since there are no dependencies to update the value of a pixel
using the sigmoid function, the image was processed in flat thread
blocks (lines) in order to coalesce the memory access.

Compute local gradients phase
The calculation of the weights gradients is done in two steps. First
the local gradients are calculated by back-propagation from the
succeeding layers. Second, the local gradients are used to compute
the gradients of the weights.

The original implementation of local gradients calculation gave
poor results on the GPUs due to the fact that it was only possible to
parallelize per convolution kernels instead of image tiles.

The algorithm utilizes the connections of the Feature Extrac-
tion Layers (FELs) from each layer to the FELs of its immediately
precedent layer. Information about these connections is contained
in the connection matrix. This behaviour is denoted as Push cal-
culation, since a layer pushes the data to its precedent layer for
calculation purposes.

In Figure 3 it is shown that, for a loop index i, data is pushed
from the FEL0 in layer i to FEL0, FEL1 and FEL3 in layer i - 1.
The rest of the connections have been ommited for clarity, however
the remaining FELs in layer i also have connections to the layer on
the left.

Since inside every iteration i the algorithm looped through the
FELs in the layer i, it may happen that FELs in layer i - 1 were
written in different (and unpredictable) points in time. It is impor-
tant to notice that the connection matrix can have infinite network-
dependent connection combinations. Thus it was not possible to
determine when or how many times the pixels in a FEL in the pre-
ceding layer would be updated.

As a result of this, the kernel could not be parallelized based on
the pixel of each FEL. Not parallelizing based on the FELs meant
that the sum of the gradients was serialized and did not improve the
overall processing time.

In order to overcome this problem, the concept of inverted con-
nection matrix was introduced. This new matrix, which is created
when parsing the network, contains the relevant information to cal-

Figure 3. Push calculation

culate the gradients of the FELs from a given layer, by pulling rel-
evant data from the FELs of the succeeding layer. This behaviour
was denoted as Pull calculation.

Figure 4. Pull calculation

As shown in Figure 4, FEL1 in layer i pulls all the information it
needs from layer i + 1. By using this pulling mechanism, it could be
garanteed that the pixels in FEL1 are only updated when reading the
inverted connection matrix that corresponds to that FEL, avoiding
memory access conflicts.

The pulling computation of the local gradients enables the par-
allelization per FEL in each layer.

Update weights phase
Update weights phase consists of two parts: summation of local
gradients followed by an update of the weights and calculation
of bias values per layer. Calculating bias values is done using the
standard optimized way of summing arrays on GPUs.

Updating delta weights requires writing to the same memory ad-
dress a number of times equivalent to the size of the outmap, ren-
dering the use of loop unrolling untenable. Hence, the basic idea
pursued was to map those parts of the algorithm that wrote to the
same destination address to a single thread block. The remaining
CUDA kernel dimensions are then used to handle outputmaps, al-
gorithm kernels and inputs per output map; since then each thread-
block would then write to a different address for each outmap, etc.
The thread blocks were used this way in order to avoid synchroniza-
tion issues between different CUDA threads attempting to write to
the same memory address. Inside the update delta weight kernel
function, each thread iterates over a set of pixels of the input asso-
ciated with the output map. Once all threads in the block complete,
their results are added and stored in the final weight location.

2 2011/12/8



2.2 Performance gains
Table 1 describes the performance gains from each function based
on the reference implementation on the CPU. It can be seen that
compute error actually decreases the overall performance but it
is required to be executed in the GPU. This choice is less time-
consuming than copying the information to the CPU, executing
the CPU implementation of the compute error function and then
copying the information back to the GPU.

Function name CPU[ms] GPU[ms] Performance gain

uchar2float 0.0736 0.0477 1.54X
uchar2shiftedfloat 0.0603 0.0389 1.55X
run convolution layer 3.6957 0.1742 21.21X
compute local gradients 0.5722 0.1139 5.02X
update weights 1.5660 0.1604 9.77X
compute error 0.0023 0.0478 0.05X

Table 1. Execution times comparison

The function run convolution layer has the largest gain, mostly
because the sigmoid function takes a considerable amount of time
in the CPU version. Since it doesn’t have data dependency, when it
runs in the GPU it is completely parallelized.

The GPU execution times for compute local gradients,
run convolution layer and update weights are similar to each other
because the paralellism is obtained in the same manner (pixels per
output map). The main difference in the gain for each one is the
level of optimization with respect to the CPU version.

Table 2 shows the execution time for the operations when run
after the first time. We used static variables to avoid allocating and
freeing memory for each execution of the GPU functions.

Function name CPU[ms] GPU[ms] Performance gain

uchar2float 0.0494 0.0234 2.11X
uchar2shiftedfloat 0.0600 0.0299 2.01X
run convolution layer 3.6648 0.1694 21.63X
compute local gradients 0.5723 0.1033 5.54X
update weights 1.5590 0.1420 10.98X
compute error 0.0023 0.0309 0.08X

Table 2. Execution time using static variables

3. Batch learning
Another approach to neural networks training is batch mode. The
main difference with respect to the online mode is the frequency
with which the weights and bias values are updated.

In online mode, the weights and bias values are updated every
time a single image is sent through the network. In other words,
every time an image passes through the network, the delta values
for bias and weights are calculated and added to the previous bias
and weights values, respectively.

In batch mode, the network is trained on a batch of images. For
each batch of images, delta values for bias and weights are accu-
mulated. It is only after the batch of images has been processed that
the previous values for bias and weights are updated. This leads to
the open issue that batch learning may take more iterations to reach
the desired error minimum. However, since the convergence speed
to this value relies on many factors such as learning rate, batch size,
number of neuron layers, and so forth, no general conclusion can
be reached regarding wich mode is better.

Batch training maps naturally to the use of multiple GPUs. First,
all the GPUs start with the same weights and bias values. Then,
each GPU runs the batch of images. These two steps comprise the
setup for batch training.

Once the batch is loaded, the GPUs are ready to process it
and generate the delta values locally. After each GPU finishes
processing, it sends the generated delta values to the GPU that is
in charge of summing the results.

A sum of the delta values from all GPUs is calculated. The result
of the sum is added to the previous bias and weights values. Finally,
the updated bias and weights values are copied back to all GPUs.
That process is shown in Figure 5

Figure 5. Batch training

The weights and bias values update was done on one GPU due
to the nature of the algorithm. CUDA 2.x introduces a memory
copying mechanism between devices which gives a substantial
speedup. By using one device as a master, it is possible to avoid
unnecessary overhead given by copying between host and device
memories.

In order to mitigate the complexity of extracting and sending
delta weights/bias values from the neural network data structure,
it was decided to allocate delta weights/values for all layers in a
continuous memory block as shown in Figure 6. Doing it in this
way provides two main advantages. First, it allows to easily copy
the values between devices by providing the pointer to the memory
block and size of the block. Second, it makes parallelizing the
summation of values from all devices straightforward: the values
are in the same position in each block, as shown in Figure 7.

3.1 Performance gains
The batch process is splitted in three computational blocks:

1. training the network with the batch of images,

2. copying delta values from GPU devices to the GPU master and
sending updated weights and bias back to the devices, and

3. summing delta values with previous values for weights and
bias.

Table 3 shows the results of processing four images using batch
method on four GPUs (one image per device).

Given that the amount of data we need to transfer and sum
on the master GPU is independent of the number of images, and
training of images is not dependent on other devices, batch method
speed-up increases linearly with the number of images that should
be processed per GPU. However, the accuracy of the algorithm
decreases subsequently.

Processing the same number of images using online method
takes 2.68745 ms and it increases linearly to the input.

3 2011/12/8



Figure 6. Block structure

Figure 7. Delta weights/bias summation

Computational block Time[ms]

Training 1.5379
Copying 0.1467
Summing 0.1276

Total 1.7743

Table 3. Batch processing results

One of the biggest bottlenecks in the proposed solution is that
all data has to be copied to a master GPU which will compute the
weights and bias values. The copying operation is blocking the
GPU master: every GPU device has to wait until the operation
is finished before its deltas can be processed. The same applies
when the master needs to replicate updated values to the GPUs: the
master has to wait until the operation is finished before it sends the
updated values to the next device. However, the latency introduced
by synchronization is smaller than the gains obtained from a faster
training.

Table 4 shows the comparison between the execution times for
different training modes. The CPU reference corresponds to a se-
quential execution of all the algorithms. Single GPU is the opti-
mized version of the CPU implementation for parallel execution in
the cluster node. Batch includes parallel execution in four GPUs
within a cluster node.

The results were obtained using a training set of ten epochs,
ten images per epoch, and ten test patterns. The main differences
between a small and a big network are the size of the input images
(96 x 96 pixels for the former, 1080 x 1080 pixels for the latter),
the number of layers (5 for the former, 10 for the latter).

Execution times [ms]
Training type Small network Big network

CPU reference 961 1235991
Single GPU 60 19159
Batch 46 5232

Table 4. Time execution comparison with different modes

The feasibility of distributing the batch learning process over
multiple cluster nodes was analyzed. The batch training has to be
run in every node. Then, the nodes have to sum the deltas locally
before sending them to the master node. It will sum the received
deltas with the current bias and weights values, and transfer the
updated values to the cluster nodes in order to start the next training
iteration.

The theoretical numbers for copying the data were obtained
taking into account the current configuration of the nodes, which
are interconnected via 1Gb/s Ethernet. It was calculated that the
time to copy the small-sized network’s data back and forth will
be around 16 ms, which considerably affects the overall training
performance. Thus batch learning using different cluster nodes
is not recommended unless the bus bandwidth between them is
increased.

Moreover, the batch learning has better performance when run-
ning more images per device. However, the batch size must be
chosen carefully, since using a large number of images per batch
would affect the accuracy of the training. Unfortunately, there are
no state-of-art techniques or heuristics to determine that parameter
since that field is still under research.

4. Conclusion and future Work
In conclusion, Convolutional Neural Networks (CNNs) are highly
suitable for parallelization on Graphical Processing Units (GPUs).
That allows to significantly reduce the training time from several
days or weeks, to the order of minutes and hours, depending on the
network size, and the image resolution. Considering the single GPU
implementation with respect to the CPU reference implementation,
a speed-up of factors 16 and 64 are obtained for a small and a big
network, respectively.

The standard implementation of the compute local gradients
phase does not exploit the full parallelism capabilities that a CUDA
device provides due to the nature of the pushing algorithm. In con-
trast, the pulling version that was introduced in this paper achieves
an improvement of 30 times in the execution time.

By using batch mode learning, the training was distributed over
multiple GPUs within a single node in the cluster. Running the
training on multiple GPUs decreases the overall execution time
even further with respect to the results obtained with the online
mode training, which uses a single GPU. Considering the batch
implementation with respect to the CPU reference implementation,
a speed-up of factors 20 and 236 are obtained for a small and a big
network, respectively.

However, the potential performance improvement achievable by
running batch learning in several cluster nodes would be negligible
due to the overhead that is generated by copying the data between
them. For small-sized networks, copying the data between nodes is
around 11 times slower than the actual batch training on a single
node.

The optimal solution would be to train a different network in
each cluster node using batch mode. Since these networks would be
independent, different configurations are possible. After training,
these networks can be compared in order to decide which one
has the highest accuracy. Such an approach would utilize the full
computational power of the cluster.

4 2011/12/8



References
[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[2] Y. Lecun, F. Huang, and L. Bottou. Learning methods for generic
object recognition with invariance to pose and lighting. Proceedings
of CVPR04, 2004.

[3] M. Peemen, B. Mesman, and H. Corporaal. Efficiency Optimization of
Trainable Feature Extractors for a Consumer Platform. Proceedings of
the 13th International Conference on Advanced Concepts for Intelligent
Vision Systems, 2011.

[4] S. Suresh, S. Omkar, and V. Mani. Parallel Implementation of Back-
Propagation Algorithm in Networks of Workstations. IEEE Transac-
tions on Parallel and Distributed Systems, 16(1):24–34, 2005.

[5] D. R. Wilson and T. R. Martinez. The general inefficiency of batch
training for gradient descent learning. Neural Networks, 16:1429–1451,
2003.

5 2011/12/8


